Official implement of paper "Does Knowledge Graph Really Matter for Recommender Systems?"
Tested on python 3.9 and Ubuntu 20.04.
Please refer to recbole to download the datasets and our paper for details.
- Our results are saved in
./result
. If you want to run experiments, please move./result
to other place or just delete it. - Replace
np.float
withfloat
inrecbole.evaluator.metrics
as there is a conflict between recbole and high version of numpy. - Run
python main.py -h
to see the usage.
python main.py --experiment noknowledge --dataset lastfm --worker_num 1 --eval_times 5 --model KGAT KGCN RippleNet CFKG CKE KGNNLS KTUP KGIN --test_type_list fact --rate 1 --save_dataset --save_dataloaders
python main.py --experiment false --dataset lastfm --worker_num 1 --rate 0 0.25 0.5 0.75 1.0 --eval_times 5 --model KGAT KGCN RippleNet CFKG CKE KGNNLS KTUP KGIN --test_type_list kg --save_dataset --save_dataloaders
python main.py --experiment decrease --dataset lastfm --worker_num 1 --eval_times 5 --model KGAT KGCN RippleNet CFKG CKE KGNNLS KTUP KGIN --test_type_list fact entity relation --rate 0.25 0.5 0.75 1 --save_dataset --save_dataloaders
python main.py --experiment coldstart --dataset lastfm --worker_num 1 --eval_times 5 --model KGAT KGCN RippleNet CFKG CKE KGNNLS KTUP KGIN --test_user_ratio 0.1 --cs_threshold 3 --test_type_list random d_fact --rate 0 0.25 0.5 0.75 1 --save_dataset --save_dataloaders