Skip to content

HxLyn3/Faster-RCNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Faster RCNN

  • Author: Haoxin Lin
  • Data: 03/05/2020
  • Version: 1.0.0
  • Brief: A Faster RCNN complemented with TensorFlow.

Test Environment

  • OS Environ
    Ubuntu 16.04.5
    GPU: TITAN X (Pascal)
    Anaconda 4.8.2
    CUDA 10.2
  • Dependencies
    python 3.6.10
    tensorflow-gpu 1.15.0
    numpy 1.18.1
    Pillow 5.3.0

Usage

  1. Download VOC2007 dataset with following instructions.

    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
  2. Extract all of these tars into one directory named VOCdevkit.

    tar xvf VOCtrainval_06-Nov-2007.tar
    tar xvf VOCtest_06-Nov-2007.tar
    tar xvf VOCdevkit_08-Jun-2007.tar
  3. Set data at the correct path of Faster RCNN project.

    mv $VOCdevkit $Faster-RCNN/data/VOCdevkit2007
  4. Download pre-trained ImageNet VGG16 model.

    cd $Faster-RCNN/model/pretrained
    wget http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz
    tar xvf vgg_16_2016_08_28.tar.gz
    rm vgg_16_2016_08_28.tar.gz
  5. It should have this basic structure.

    Faster RCNN
        |──data
        |    |──VOCdevkit2007
        |    |    |──VOCcode
        |    |    |──VOC2007
        |    |    └──···
        |    └──···
        |──model
        |    └──pretrained
        |        └──vgg_16.ckpt
        |──network
        |    └──···
        |──train.py
        └──test.py
    
  6. Train Faster RCNN with Pascal VOC 2007.

    python3 train.py
  7. Test.

    python3 test.py

Results

class AP class AP
aeroplane 0.6974 diningtable 0.6314
bicycle 0.7100 dog 0.7518
bird 0.5914 horse 0.8008
boat 0.5430 motorbike 0.6987
bottle 0.4067 person 0.7025
bus 0.7478 pottedplant 0.3567
car 0.7160 sheep 0.5993
cat 0.7687 sofa 0.6431
chair 0.4441 train 0.6885
cow 0.7383 tvmonitor 0.5875

Mean AP = 0.6412

About

Faster RCNN using TensorFlow

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages