Skip to content
This repository has been archived by the owner on Aug 5, 2024. It is now read-only.

IO-Aerospace-software-engineering/Astrodynamics.Net

Repository files navigation

Important

IO.Astrodynamics.Net is still alive, it has simply been merged with the original repository. The adventure continues here.

IO.Astrodynamics.Net

Presentation

Continous integration Continous deployment

IO.Astrodynamics.Net is a .Net astrodynamics framework based on cspice toolkit(N 67) developped by the JPL and IO.Astrodynamics native library, it provides the best of both worlds :

C++ Velocity + .Net productivity = ❤️

This framework provides the following features :

  • Work with JPL Spice kernels and stars
  • Export simulation to Cosmographia
  • PDS Archive management
    • Generate archive from object
    • Generate object from archive
    • Validate archive from Xml schemas
  • Compute and convert orbital parameters
    • State vector
    • Two lines elements
    • Equinoctial
    • Keplerian elements
  • Compute and convert coordinates system
    • Equatorial
    • Horizontal
    • Planetodetic
    • Planetodentric
  • Manipulate celestial items
    • Stars
    • Planets
    • Moons
    • Barycenters
    • Lagrange points
    • Comets and asteroids
  • Transform frames
    • ICRF / J2000
    • Ecliptic_J2000
    • Ecliptic_B1950
    • Galactic
    • B1950
    • FK4
    • Body fixed frames and ITRF93 (High accuracy earth fixed frame)
  • Configure spacecraft
    • Clock
    • Fuel tank
    • Engines
    • Instrument
  • Propagate spacecraft
    • Impulse maneuvers :
      • Apogee height
      • Perigee height
      • Plane alignment
      • Combined maneuver
      • Apsidal alignment
      • Phasing
      • Fuel balance
    • Attitudes
      • Instrument pointing toward an object (Surface site, celestial body, spacecraft,...)
      • Nadir
      • Zenith
      • Prograde
      • Retrograde
  • Manipulate surface site on any celestial body
  • Evaluate launch opportunities
  • Use or convert different time referential (TDB, UTC, Local)
  • Get celestial item information based on Naif kernels
  • Find time windows based on distance constraints from spacecraft, celestial body or ground site
  • Find time windows based on occultation constraints from spacecraft, celestial body or ground site
  • Find time windows based on coordinate constraints from spacecraft, celestial body or ground site
  • Find time windows based on illumination constraints from ground site.
  • Find time windows when an object is in instrument field of view.
  • Manipulate kernel files
  • Math tools
    • Vector
    • Matrix
    • Quaternion
    • Lagrange interpolation
  • ...

Concept

IO.Astrodynamics is based on Spice concept

To work, this framework needs data (Ephemeris, Planetary constants, leap seconds, mission data, ...) these data can be found here

To use these data in the framework, just call this function :

//Load required kernels for computation
API.Instance.LoadKernels(new DirectoryInfo("<your path containing data>"));

When you use the propagation functionalities, you will have to provide an output path to reuse, if necessary, the data generated in another software.

Installation

This package is hosted by Nuget here. You can install it in your project with this command :

dotnet add package IO.Astrodynamics

Quick start

//LET'S GO !
//In this example we'll get the moon state vector in ICRF frame relative to the earth without aberration

//Load required kernels for computation
API.Instance.LoadKernels(new DirectoryInfo("/home/spacer/Sources/SDK.Net/IO.Astrodynamics.Tests/Data/SolarSystem"));

//Create moon object
var moon = new CelestialBody(PlanetsAndMoons.MOON.NaifId);

//Get moon ephemeris
var ephemeris = moon.GetEphemeris(DateTimeExtension.J2000, moon.InitialOrbitalParameters.CenterOfMotion, Frame.ICRF, Aberration.None).ToStateVector();

//Display some informations
Console.WriteLine($"Position : {ephemeris.Position.ToString()}");
Console.WriteLine($"Velocity : {ephemeris.Velocity.ToString()}");

//You should have the following result : 
// Position : Vector3 { X = -291608384.6334355, Y = -266716833.39423338, Z = -76102487.09990202 }
// Velocity : Vector3 { X = 643.5313877190328, Y = -666.0876840916304, Z = -301.32570498227307 }

You can find more advanced examples here

Documentation

For more information you can read the wiki