-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
0c4c024
commit 9bc704d
Showing
1 changed file
with
82 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
#' Simulates an adult population with Gompertz distribution | ||
#' | ||
#' In many instances, it is useful to calculate with a population with | ||
#' known parameters. To generate a population with realistic | ||
#' characteristics is less obvious than it seems. We operate here | ||
#' with the Gompertz distribution which provides a reasonable | ||
#' approximation of human mortality for adult mortality, that is | ||
#' for the ages >= 15 years. The user has to specify | ||
#' either the parameter b or the modal age M. The modal age M is | ||
#' particular useful as it provides an intuitive understanding of | ||
#' the resulting age distribution. In both instances, the second | ||
#' parameter a is generated by the regression formula found by | ||
#' \emph{Sasaki and Kondo 2016}. If neither is given, a population | ||
#' with random parameters realistic for pre-modern times is generated. | ||
#' | ||
#' @param x number of individuals to be simulated. | ||
#' | ||
#' @param b numeric, optional. Gompertz parameter controlling the | ||
#' level of mortality. | ||
#' | ||
#' @param M numeric, optional. Modal age M. | ||
#' | ||
#' @param start_age numeric, optional. Start age, default: 15 years. | ||
#' | ||
#' @return | ||
#' A list of two data.frames with the following items: | ||
#' | ||
#' \itemize{ | ||
#' \item \bold{First data.frame} | ||
#' \item \bold{N}: Number of individuals. | ||
#' \item \bold{b}: Gompertz parameter controlling mortality. | ||
#' \item \bold{M}: Modal age. | ||
#' \item \bold{a}: Gompertz parameter controlling hazard of the | ||
#' youngest age group. | ||
#' } | ||
#' | ||
#' @references | ||
#' | ||
#' \insertRef{sasaki and kondo 2016}{mortAAR} | ||
#' | ||
#' @examples | ||
#' | ||
#' pop_lt <- pop.sim.gomp(10000, M = 35) | ||
|
||
#' @rdname pop.sim.gomp | ||
#' @export | ||
pop.sim.gomp <- function(x, b, M, start_age) { | ||
UseMethod("pop.sim.gomp") | ||
} | ||
|
||
#' @rdname pop.sim.gomp | ||
#' @export | ||
#' @noRd | ||
pop.sim.gomp.default <- function(x, b, M, start_age) { | ||
stop("x must be a numeric value.") | ||
} | ||
|
||
#' @rdname pop.sim.gomp | ||
#' @export | ||
#' @noRd | ||
pop.sim.gomp.df <- function(x, b = NULL, M = NULL, start_age = 15) { | ||
if ( length(M) > 0) { | ||
M_1 <- 0 | ||
M_2 <- 0 | ||
while ( M < M_1 | M > M_2 ) { | ||
b <- runif(n = 1, min = 0.02, max = 0.1) | ||
a <- exp(rnorm(1, (-66.77 * (b - 0.0718) - 7.119), 0.0823)) | ||
M_ <- 1 / b * log (b/a) + start_age | ||
M_1 <- M_ - 0.001 | ||
M_2 <- M_ + 0.001 | ||
} | ||
} else if (length(b) > 0) { | ||
a <- exp(rnorm(1, (-66.77 * (b - 0.0718) - 7.119), sqrt(0.0823) ) ) | ||
} else { | ||
b <- runif(n = 1, min = 0.02, max = 0.05) | ||
a <- exp(rnorm(1, (-66.77 * (b - 0.0718) - 7.119), sqrt(0.0823) ) ) | ||
} | ||
|
||
lt_result <- data.frame(ind = 1:x) %>% | ||
mutate(age = round(flexsurv::rgompertz(n(), b, a) ) + start_age) | ||
return(lt_result) | ||
} |