๐ง Email โข ๐ผ LinkedIn โข ๐ GitHub
- ๐ฏ Overview
- โจ Key Highlights
- ๐ง Deep Learning Projects
- ๐ค Machine Learning Projects
- ๐ ๏ธ Technical Stack
- ๐ Project Statistics
- ๐ Quick Start
- ๐ Repository Structure
- ๐ก Key Learnings
- ๐ค Connect With Me
This repository showcases 82+ production-ready implementations spanning the entire spectrum of Machine Learning and Deep Learning. Each script is meticulously documented with comprehensive explanations, making it an ideal resource for learning, reference, and portfolio demonstration.
- โ Self-Documented Code: Every script includes detailed comments explaining the "what" and "why"
- โ Industry-Standard Practices: Follows best practices in model development, validation, and deployment
- โ End-to-End Workflows: Complete pipelines from data preprocessing to model evaluation
- โ Real-World Applications: Practical implementations solving actual business problems
- โ Recruiter-Friendly: Clear structure and documentation designed for technical interviews
| Project | Technology | Highlights |
|---|---|---|
| Age & Gender Detection | EfficientNetB4, Transfer Learning | Multi-task learning with TTA, 95%+ accuracy, GUI deployment |
| Traffic Sign Classification | CNN, Data Augmentation | 43-class classification, real-time prediction capability |
| Used Car Price Prediction | Linear Regression, Feature Engineering | VIF analysis, log transformation, 85%+ Rยฒ score |
| Transfer Learning Pipeline | MobileNetV3, Fine-tuning | Frozen layers, custom head, early stopping |
|
Deep Learning
|
Machine Learning
|
๐ผ๏ธ Computer Vision & Image Classification
| Script | Description | Key Techniques |
|---|---|---|
Age_Gender_Detection2.py |
Multi-task age & gender prediction | EfficientNetB4, Mixed Precision, TTA, Calibration |
ex_Traffic_sign_classification.py |
43-class traffic sign classifier | CNN, Heavy Augmentation, Batch Normalization |
17__Transfer_Learning.py |
Horse vs Human classification | MobileNetV3, Layer Freezing, Fine-tuning |
18_Feature_Extraction.py |
Pre-trained feature extraction | VGG16/ResNet, Custom Classifier Head |
| Script | Description | Dataset |
|---|---|---|
12__cat_dog_Classification_Argumentation.py |
Binary classification with augmentation | Cats & Dogs (2,000 images) |
09_Flower_manual.py |
Multi-class flower classification | Flowers (5 classes) |
ex_Intel_Image_Classification.py |
Scene classification | Intel Image (6 classes) |
12_cifar10CNN.py |
Object recognition | CIFAR-10 (10 classes) |
07_MNIST.py- Handwritten digit recognition11_Fashion_Mist_CNN.py- Fashion item classification08_Human_vs_Horse_dataset.py- Binary classification09__Augmentation.py- Data augmentation techniques
20_Delpoy_openCV.py- Real-time OpenCV deployment10_Load_saved_model.py- Model persistence & loading02__TensorBoard.py- Training visualization15__PreTrain_model.py&16__PreTrain_model_2.py- Pre-trained model usage
๐งฎ Neural Network Fundamentals
0_DNN_Archietecture.py- Deep Neural Network architecture13_Perceptron_Intro.py- Perceptron from scratch14_multiClass_perceptron_ex1.py- Multi-class perceptron01_Binary_classification_p2.py- Binary classification basics6__multiclass_p-1.py&6__multiclass_p-2.py- Multi-class classification5__multiple_reg_DL.py- Multiple regression with DL
๐ Regression Analysis
| Script | Description | Techniques |
|---|---|---|
Project_1_Predict_The_Price_of_Used_Car.py |
End-to-end price prediction | VIF, Log Transform, Outlier Removal, Scaling |
EX_polynomial_regression.py |
Non-linear relationship modeling | Polynomial features, Degree selection |
EX_Lasso_Ridge_Regulization.py |
Regularization techniques | L1/L2 penalties, Cross-validation |
Linear_Regression_Height_to_weight.py- Simple linear regressionLinear_Regression_Temp_Convertor.py- Temperature predictionEX_Multiple_LINEAR_Regression_Pract_Session3.py- Multiple linear regression03_linear_Regression_Assumptions_Task.py- Assumption validationEX_linear_Regression_Assumptions.py- Statistical testingEX_model selection_Regression.py- Model comparisonEX_Support-Vector-Machine-R.py- SVM for regression
๐ฏ Classification Algorithms
| Algorithm | Scripts | Features |
|---|---|---|
| Decision Trees | EX_Decision_Tree_Classification.py |
Gini/Entropy, Pruning |
| Random Forest | EX_RandomForest_Classification(Baagging).py |
Bagging, Feature Importance |
| Gradient Boosting | EX_5__Gradient_Boosting_Classification.py |
Sequential learning, Weak learners |
EX_9__K-NearestNeighbourClassification.py- KNN classifierEX_9__K-NearestNeighbourRegression.py- KNN regressorEX_6__Radius_Neighbors_Classification.py- Radius-based classification
EX_10_Naive_Bays_Classification.py- Naive BayesEX_Support_Vector_Machine-classification.py- SVM with kernelsEX_Dec_Support_Vector_machine.py- Decision boundary visualizationLogistic-Regression_Ex2_Purchase.py- Binary logistic regressionLogistic-Regression_Ex3_Binary.py- Advanced logistic regressionEX_Logistic_Regression_stats_model.py- Statistical modeling
๐ Clustering & Unsupervised Learning
| Algorithm | Script | Key Features |
|---|---|---|
| K-Means | EX_Unsupervised_K-MEANS.py |
Elbow method, Silhouette score |
| Hierarchical | EX_Hierarchical_Clustering_Agglomerative.py |
Dendrogram, Linkage methods |
| DBSCAN | EX_DBSCAN.py |
Density-based, Noise detection |
| Mean Shift | EX_MeanShift.py |
Bandwidth selection |
EX_K-MEANS_ELBOW.py- Optimal cluster selectionAssignment_1_Clustering_Iris.py- Iris clustering analysis
โ๏ธ Model Optimization & Validation
EX_HyperParameter_Tuning_Part1.py- GridSearchCV basicsEX_HyperParameter_Tuning_Part2.py- Advanced tuning (RandomForest, SVC)
EX_ModelSelection_Classification.py- Classifier comparisonModel_Selection_Regression.py- Regressor comparisonEX_AUC_ROC.py,EX_AUC_ROC_2.py,EX_AUC_ROC_Part_3.py- ROC curve analysis
๐ง Feature Engineering
| Category | Script | Techniques |
|---|---|---|
| Extraction | EX_Feature Engineering_feature_extraction.py |
PCA, Kernel PCA, t-SNE |
| Selection | EX_feature_selection.py |
Filter/Wrapper/Embedded methods |
| Preprocessing | EX_data_PreProcessiing.py |
Scaling, Encoding, Imputation |
๐จ Specialized Applications
App_Recommendations_Org.py- Recommendation systemApp_Recommendations_Temp.py- Recommendation system (variant)Ex4_IceCream_UnitSalesPrediction_Modified.py- Sales forecasting
# Deep Learning
tensorflow >= 2.8.0
keras >= 2.8.0
opencv-python >= 4.5.0
# Machine Learning
scikit-learn >= 1.0.0
statsmodels >= 0.13.0
# Data Processing
numpy >= 1.21.0
pandas >= 1.3.0
# Visualization
matplotlib >= 3.4.0
seaborn >= 0.11.0
# Utilities
pillow >= 8.3.0
tkinter (built-in)- Mixed Precision Training (FP16/FP32)
- Test-Time Augmentation (TTA)
- Learning Rate Scheduling (Cosine Annealing)
- Early Stopping & Model Checkpointing
- Variance Inflation Factor (VIF) Analysis
- Cross-Validation (K-Fold, Stratified)
- Ensemble Methods (Voting, Stacking)
๐ Total Projects: 82
โโโ ๐ง Deep Learning: 30 projects
โ โโโ Computer Vision: 20
โ โโโ Neural Networks: 8
โ โโโ Deployment: 2
โ
โโโ ๐ค Machine Learning: 52 projects
โโโ Regression: 12
โโโ Classification: 18
โโโ Clustering: 6
โโโ Optimization: 5
โโโ Feature Engineering: 3
โโโ Applications: 8
๐ Lines of Code: 15,000+
๐ Documentation: Comprehensive inline comments
๐ฏ Code Quality: Production-ready, self-documented
# Python 3.8 or higher
python --version
# Install dependencies
pip install tensorflow scikit-learn pandas numpy matplotlib seaborn opencv-python pillow# Clone the repository
git clone https://github.com/ImdataScientistSachin/ML-DL-Portfolio.git
cd ML-DL-Portfolio
# Navigate to desired directory
cd "Deep Learning"
# or
cd "Machine Learning"
# Run any script
python Age_Gender_Detection2.py# Load the trained model
from tensorflow.keras.models import load_model
model = load_model('final_age_gender_model.keras')
# Predict on new image
age, gender, confidence = predict_age_gender('path/to/image.jpg', model)
print(f"Age: {age}, Gender: {gender} ({confidence*100:.2f}%)")๐ฆ ML-DL-Portfolio
โโโ ๐ Deep Learning/
โ โโโ ๐ฏ Age_Gender_Detection2.py # Multi-task learning
โ โโโ ๐ฆ ex_Traffic_sign_classification.py # 43-class CNN
โ โโโ ๐ 17__Transfer_Learning.py # MobileNetV3 fine-tuning
โ โโโ ๐ฑ 12__cat_dog_Classification_Argumentation.py
โ โโโ ๐ธ 09_Flower_manual.py
โ โโโ ๐ 11_Fashion_Mist_CNN.py
โ โโโ ... (24 more projects)
โ
โโโ ๐ Machine Learning/
โ โโโ ๐ Project_1_Predict_The_Price_of_Used_Car.py
โ โโโ โ๏ธ EX_HyperParameter_Tuning_Part2.py
โ โโโ ๐ EX_Feature Engineering_feature_extraction.py
โ โโโ ๐ EX_AUC_ROC.py
โ โโโ ๐ฒ EX_RandomForest_Classification(Baagging).py
โ โโโ ๐ EX_polynomial_regression.py
โ โโโ ... (46 more projects)
โ
โโโ ๐ README.md
-
Deep Learning Mastery
- Architecting CNNs from scratch
- Leveraging transfer learning for limited data scenarios
- Implementing advanced augmentation strategies
- Optimizing training with callbacks and mixed precision
-
Machine Learning Expertise
- End-to-end ML pipeline development
- Statistical validation and assumption testing
- Feature engineering and dimensionality reduction
- Hyperparameter optimization strategies
-
Best Practices
- Writing self-documenting, maintainable code
- Implementing proper train/validation/test splits
- Handling imbalanced datasets
- Model evaluation and selection criteria
- Predictive Analytics: Price prediction, sales forecasting
- Computer Vision: Age/gender detection, object classification
- Automation: Recommendation systems, automated classification
- Decision Support: Statistical modeling, risk assessment
Data Scientist | Machine Learning Engineer
I'm actively seeking opportunities in Data Science, Machine Learning Engineering, and AI Research.
Open to:
- Full-time positions
- Freelance projects
- Research collaborations
- Technical consulting
โญ If you find this repository helpful, please consider giving it a star!
๐ All code is well-documented and ready for production use
๐ Regularly updated with new projects and improvements
This project is licensed under the MIT License - see the LICENSE file for details.
Built with โค๏ธ by Sachin Paunikar
Transforming Data into Actionable Insights