Skip to content
This repository has been archived by the owner on Sep 27, 2024. It is now read-only.
/ MuTabNet Public archive

ICDAR 2024 Table OCR Model

License

Notifications You must be signed in to change notification settings

JG1VPP/MuTabNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MuTabNet

End-to-End table OCR model using a hierarchical Transformer that outputs HTML tags and cell contents.

Usage

Install

pip install -e .

Datasets

Download the following datasets:

Preprocess

Follow MTL-TabNet instructions. The datasets must be placed in data directory as follows:

$ ls ~/data
fintabnet/
  img_tables/
    train/
      100000_61623.png
      100001_61624.png
      100002_61625.png
      100003_61626.png
      100004_61627.png
    val/
ground_truth_fintabnet.json
ground_truth_pubtabnet.json
icdar-task-b/
  final_eval/
    000221630ba33f9118f2671a715d6962e08d6b76a5a0c77a9fe26c291df763b0.png
    0005e8fe1b3ba14982336837219f285921af7c152cfc81ac88bcf52809299279.png
    002b1bf2bbb7dd7ec6201174e68df6346f448cd3951e861c3f940711c769f25f.png
    002bfeebe20be2e97fab46b99ce68321afb8972f6d8f131f0c1f5392819d3a23.png
    002c7215e95cd4bfebffb13dc0db32ab229a6674f4f1add84518ae52b75ac0da.png
  final_eval.json
mmocr_fintabnet/
  train/
    100000_61623.txt
    100001_61624.txt
    100002_61625.txt
    100003_61626.txt
    100004_61627.txt
  val/
mmocr_pubtabnet/
  train/
    PMC1064074_007_00.txt
    PMC1064076_003_00.txt
    PMC1064076_004_00.txt
    PMC1064080_002_00.txt
    PMC1064094_007_00.txt
  val/
pubtabnet/
  PubTabNet_2.0.0.jsonl
  train/
    PMC1064074_007_00.png
    PMC1064076_003_00.png
    PMC1064076_004_00.png
    PMC1064080_002_00.png
    PMC1064094_007_00.png
  val/

Training

Run the following command to start training using four GPUs:

name=pubtab250
save=~/work/$name

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./train.sh ./configs/$name.py $save 4

Evaluation

Run the following command to evaluate the model and calculate TEDS score:

path=~/data/icdar-task-b/final_eval
json=~/data/icdar-task-b/final_eval.json

python test.py --conf ./configs/$name.py --ckpt $save/latest.pth --path $path --json $json

For FinTabNet, we use validation set including 10,656 tables as test set in imitation of the previous work.

Requirements

We recommend that you use at least four V100 32GB GPUs or two A100 80GB GPU.

License

This project is licensed under the MIT License. See LICENSE for more details.

Citation

@inproceedings{ICDAR24KAT,
  author={Takaya Kawakatsu},
  title={Multi-Cell Decoder and Mutual Learning for Table Structure and Character Recognition},
  booktitle={Document Analysis and Recognition - ICDAR 2024},
  publisher={Springer Nature Switzerland},
  year={2024},
  pages={389--405},
}