Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature/brightest pixel #154

Merged
merged 4 commits into from
Dec 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 3 additions & 5 deletions autoarray/dataset/imaging/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -345,7 +345,7 @@ def apply_noise_scaling(
mask: Mask2D,
noise_value: float = 1e8,
signal_to_noise_value: Optional[float] = None,
should_zero_data : bool = True
should_zero_data: bool = True,
) -> "Imaging":
"""
Apply a mask to the imaging dataset using noise scaling, whereby the maskmay zero the data and increase
Expand Down Expand Up @@ -387,12 +387,10 @@ def apply_noise_scaling(
noise_map = self.noise_map.native
noise_map[mask == False] = noise_value
else:

edge_mask = mask.derive_mask.edge

noise_map = np.where(
mask == False,
np.median(self.data.native[edge_mask == False]) / signal_to_noise_value,
np.median(self.data.native[mask.derive_mask.edge == False])
/ signal_to_noise_value,
self.noise_map.native,
)

Expand Down
97 changes: 97 additions & 0 deletions autoarray/structures/arrays/uniform_2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -358,6 +358,103 @@ def binned_across_columns(self) -> Array1D:
# binned_array = (self.native*np.invert(self.mask)).sum(axis=1)/np.invert(self.mask).sum(axis=1)
return Array1D.no_mask(values=binned_array, pixel_scales=self.pixel_scale)

def brightest_coordinate_in_region_from(
self, region: Optional[Tuple[float, float, float, float]]
) -> Tuple[float, float]:
"""
Returns the brightest pixel in the array inside an input region of form (y0, y1, x0, x1) where
the region is in scaled coordinates.

For example, if the input region is `region=(-0.15, 0.25, 0.35, 0.55)` the code finds all pixels inside of
this region in scaled units, finds the brightest pixel of those pixels and then returns the scaled
coordinate location of that brightest pixel.

The centre of the brightest pixel is returned, the function `brightest_sub_pixel_coordinate_in_region_from`
performs a sub pixel calculation to return the brightest sub pixel coordinate.

Parameters
----------
region
The (y0, y1, x0, x1) region in scaled coordinates over which the brightest coordinate is located.

Returns
-------
The coordinates of the brightest pixel in scaled units (converted from pixels units).
"""

y1, y0 = self.geometry.pixel_coordinates_2d_from(
scaled_coordinates_2d=(
region[0] - self.pixel_scales[0] / 2.0,
region[2] + self.pixel_scales[0] / 2.0,
)
)
x0, x1 = self.geometry.pixel_coordinates_2d_from(
scaled_coordinates_2d=(
region[1] - self.pixel_scales[1] / 2.0,
region[3] + self.pixel_scales[1] / 2.0,
)
)

extracted_region = self.native[y0:y1, x0:x1]

brightest_pixel_value = np.max(extracted_region)
extracted_pixels = np.argwhere(extracted_region == brightest_pixel_value)[0]
pixel_coordinates_2d = (y0 + extracted_pixels[0], x0 + extracted_pixels[1])

return self.geometry.scaled_coordinates_2d_from(
pixel_coordinates_2d=pixel_coordinates_2d
)

def brightest_sub_pixel_coordinate_in_region_from(
self, region: Optional[Tuple[float, float, float, float]], box_size: int = 1
) -> Tuple[float, float]:
"""
Returns the brightest sub-pixel in the array inside an input region of form (y0, y1, x0, x1) where
the region is in scaled coordinates.

For example, if the input region is `region=(-0.15, 0.25, 0.35, 0.55)` the code finds all pixels inside of
this region in scaled units, finds the brightest pixel of those pixels, and then on a 3x3 grid surrounding
this pixel determines the locaiton of the brightest sub pixel using a weighted centre calculation.

The centre of the brightest pixel is returned, the function `brightest_sub_pixel_coordinate_in_region_from`
performs a sub pixel calculation to return the brightest sub pixel coordinate.

Parameters
----------
region
The (y0, y1, x0, x1) region in scaled coordinates over which the brightest coordinate is located.

Returns
-------
The coordinates of the brightest pixel in scaled units (converted from pixels units).
"""
brightest_pixel = self.brightest_coordinate_in_region_from(region=region)

y, x = self.geometry.pixel_coordinates_2d_from(
scaled_coordinates_2d=brightest_pixel
)
region_start_y, region_end_y = max(0, y - box_size), min(
self.shape_native[0], y + box_size + 1
)
region_start_x, region_end_x = max(0, x - box_size), min(
self.shape_native[1], x + box_size + 1
)
region = self.native[region_start_y:region_end_y, region_start_x:region_end_x]

y_indices, x_indices = np.meshgrid(
range(region_start_y, region_end_y),
range(region_start_x, region_end_x),
indexing="ij",
)

weights = region.flatten()
subpixel_y = np.sum(weights * y_indices.flatten()) / np.sum(weights)
subpixel_x = np.sum(weights * x_indices.flatten()) / np.sum(weights)

return self.geometry.scaled_coordinates_2d_from(
pixel_coordinates_2d=(subpixel_y, subpixel_x)
)

def zoomed_around_mask(self, buffer: int = 1) -> "Array2D":
"""
Extract the 2D region of an array corresponding to the rectangle encompassing all unmasked values.
Expand Down
92 changes: 92 additions & 0 deletions test_autoarray/structures/arrays/test_uniform_2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -565,6 +565,98 @@ def test__binned_across_columns():
assert (array.binned_across_columns == np.array([1.5, 6.0, 9.0])).all()


def test__brightest_pixel_in_region_from():
mask = aa.Mask2D.all_false(shape_native=(4, 4), pixel_scales=0.1)
array_2d = aa.Array2D(
values=[
[1.0, 2.0, 3.0, 4.0],
[6.0, 7.0, 8.0, 9.0],
[11.0, 12.0, 13.0, 15.0],
[16.0, 17.0, 18.0, 20.0],
],
mask=mask,
)

brightest_coordinate = array_2d.brightest_coordinate_in_region_from(
region=(-0.26, 0.06, -0.06, 0.06)
)

assert brightest_coordinate == pytest.approx((-0.15, 0.05), 1.0e-4)

brightest_coordinate = array_2d.brightest_coordinate_in_region_from(
region=(-0.051, 0.151, -0.151, 0.149)
)

assert brightest_coordinate == pytest.approx((-0.05, 0.05), 1.0e-4)

mask = aa.Mask2D.all_false(shape_native=(5, 5), pixel_scales=0.1)
array_2d = aa.Array2D(
values=[
[1.0, 2.0, 3.0, 4.0, 5.0],
[6.0, 7.0, 8.0, 9.0, 10.0],
[11.0, 12.0, 13.0, 14.0, 15.0],
[16.0, 17.0, 18.0, 19.0, 20.0],
[21.0, 22.0, 23.0, 24.0, 25.0],
],
mask=mask,
)

brightest_coordinate = array_2d.brightest_coordinate_in_region_from(
region=(-0.15, 0.15, -0.15, 0.15)
)

assert brightest_coordinate == pytest.approx((-0.1, 0.1), 1.0e-4)

brightest_coordinate = array_2d.brightest_coordinate_in_region_from(
region=(-0.25, 0.15, -0.15, 0.15)
)

assert brightest_coordinate == pytest.approx((-0.2, 0.1), 1.0e-4)

brightest_coordinate = array_2d.brightest_coordinate_in_region_from(
region=(-0.15, 0.15, -0.15, 0.25)
)

assert brightest_coordinate == pytest.approx((-0.1, 0.2), 1.0e-4)


def test__brightest_sub_pixel_in_region_from():
mask = aa.Mask2D.all_false(shape_native=(4, 4), pixel_scales=0.1)
array_2d = aa.Array2D(
values=[
[1.0, 2.0, 3.0, 4.0],
[6.0, 7.0, 8.0, 9.0],
[11.0, 12.0, 13.0, 15.0],
[16.0, 17.0, 18.0, 20.0],
],
mask=mask,
)

brightest_coordinate = array_2d.brightest_sub_pixel_coordinate_in_region_from(
region=(-0.26, 0.06, -0.06, 0.06)
)

assert brightest_coordinate == pytest.approx((-0.1078947, 0.056315), 1.0e-4)

mask = aa.Mask2D.all_false(shape_native=(5, 5), pixel_scales=0.1)
array_2d = aa.Array2D(
values=[
[1.0, 2.0, 3.0, 4.0, 5.0],
[6.0, 7.0, 8.0, 9.0, 10.0],
[11.0, 12.0, 13.0, 14.0, 15.0],
[16.0, 17.0, 18.0, 19.0, 20.0],
[21.0, 22.0, 23.0, 24.0, 25.0],
],
mask=mask,
)

brightest_coordinate = array_2d.brightest_sub_pixel_coordinate_in_region_from(
region=(-0.15, 0.15, -0.15, 0.15)
)

assert brightest_coordinate == pytest.approx((-0.11754, 0.103508), 1.0e-4)


def test__header__modified_julian_date():
header_sci_obj = {"DATE-OBS": "2000-01-01", "TIME-OBS": "00:00:00"}

Expand Down
Loading