Skip to content

Fundamentals of Speech Signal Processing at NTU 2018 Spring.

Notifications You must be signed in to change notification settings

JasonYao81000/DSP2018SPRING

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DSP2018SPRING

Fundamentals of Speech Signal Processing at NTU 2018 Spring.

This course has three homeworks.

Table of Contents

  1. Homework 1
  2. Homework 2
  3. Homework 3

Homework 1

I. ENVIRONMENT

r06922002@linux6.csie.ntu.edu.tw

II. HOW TO EXECUTE

2.1. Make

cd hw1_r06922002/
make

2.2. Train

./train 1000 ../model_init.txt ../seq_model_01.txt ./model_01.txt
./train 1000 ../model_init.txt ../seq_model_02.txt ./model_02.txt
./train 1000 ../model_init.txt ../seq_model_03.txt ./model_03.txt
./train 1000 ../model_init.txt ../seq_model_04.txt ./model_04.txt
./train 1000 ../model_init.txt ../seq_model_05.txt ./model_05.txt

2.3. Test

./test ../modellist.txt ../testing_data1.txt ../result1.txt
./test ../modellist.txt ../testing_data2.txt ../result2.txt

III. RESULTS

iteration_acc.png


Homework 2

I. ENVIRONMENT

r06922002@linux3.csie.ntu.edu.tw

II. HOW TO EXECUTE

cd hw2_r06922002/
bash 00_clean_all.sh
bash 01_run_HCopy.sh
bash 02_run_HCompV.sh
bash 03_training.sh
bash 04_testing.sh
cat result/accuracy

III. Run Baseline (40%)

hw2_baseline.png

IV. Imporve Accuracy (40%)

hw2_improved.png


Homework 3

I. ENVIRONMENT

r06922002@linux3.csie.ntu.edu.tw

II. HOW TO COMPILE

cd hw3_r06922002/
make clean
copy TA’s bigram.lm, Big5-ZhuYin.map, testdata to ./hw3_r06922002/
make MACHINE_TYPE=i686-m64 SRIPATH=/home/master/06/r06922002/DSP2018Spring/srilm-1.5.10 all

III. HOW TO EXECUTE

cd hw3_r06922002/
make clean
copy TA’s bigram.lm, Big5-ZhuYin.map, testdata to ./r06922002/
make MACHINE_TYPE=i686-m64 SRIPATH=/home/master/06/r06922002/DSP2018Spring/srilm-1.5.10 all
make map
make MACHINE_TYPE=i686-m64 SRIPATH=/home/master/06/r06922002/DSP2018Spring/srilm-1.5.10 run

IV. WHAT I HAVE DONE

4.1. Segment corpus and all test data into characters

./separator_big5.pl corpus.txt > corpus_seg.txt
./separator_big5.pl testdata/xx.txt > xx.txt

4.2. Train character-based bigram LM (Bigram)

#!/bin/bash
SRIPATH="/home/master/06/r06922002/DSP2018Spring/srilm-1.5.10"
SRIPATH_BIN="$SRIPATH/bin/i686-m64"
$SRIPATH_BIN/ngram-count -text corpus_seg.txt -write lm.cnt -order 2
$SRIPATH_BIN/ngram-count -read lm.cnt -lm bigram.lm -unk -order 2

4.3. Generate ZhuYin-Big5.map from Big5-ZhuYin.map

python mapping.py Big5-ZhuYin.map ZhuYin-Big5.map

or

make map

4.4. Using disambig to decode testdata/xx.txt (Bigram)

#!/bin/bash
SRIPATH="/home/master/06/r06922002/DSP2018Spring/srilm-1.5.10"
SRIPATH_BIN="$SRIPATH/bin/i686-m64"
$SRIPATH_BIN/disambig -text testdata/xx.txt -map ZhuYin-Big5.map -lm bigram.lm -order 2 > result1/xx.txt

4.5. Using mydisambig to decode testdata/xx.txt (Bigram)

./mydisambig -text testdata/xx.txt -map ZhuYin-Big5.map -lm bigram.lm -order 2 > result2/xx.txt

or

make run

4.6. Results (Bigram)

hw3_results_comparison.png

About

Fundamentals of Speech Signal Processing at NTU 2018 Spring.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published