Optimization algorithms implemented in Rust
For now optlib provides genetic algorithm and partcile swarm algorithm.
//! Example of optimizing the Schwefel function with genetic algorithm.
//!
//! y = f(x), where x = (x0, x1, ..., xi,... xn).
//! Global minimum is x' = (420.9687, 420.9687, ...) for any xi lying in [-500.0; 500.0].
//! f(x') = 0
//!
//! # Terms
//! * `Goal function` - the function for optimization. y = f(x).
//! * `Gene` - a single value of xi.
//! * `Chromosome` - a point in the search space. x = (x0, x1, x2, ..., xn).
//! * `Individual` - union of x and value of goal function.
//! * `Population` - set of the individuals.
//! * `Generation` - a number of iteration of genetic algorithm.
use std::io;
use optlib::genetic::{self, creation, cross, mutation, pairing, pre_birth, selection};
use optlib::tools::logging;
use optlib::tools::stopchecker;
use optlib::{GoalFromFunction, Optimizer};
use optlib_testfunc;
/// Gene type
type Gene = f32;
/// Chromosomes type
type Chromosomes = Vec<Gene>;
fn main() {
// General parameters
// Search space. Any xi lies in [-500.0; 500.0]
let minval: Gene = -500.0;
let maxval: Gene = 500.0;
// Count individuals in initial population
let population_size = 500;
// Count of xi in the chromosomes
let chromo_count = 15;
let intervals = vec![(minval, maxval); chromo_count];
// Make a trait object for goal function (Schwefel function)
let goal = GoalFromFunction::new(optlib_testfunc::schwefel);
// Make the creator to create initial population.
// RandomCreator will fill initial population with individuals with random chromosomes in a
// given interval,
let creator = creation::vec_float::RandomCreator::new(population_size, intervals.clone());
// Make a trait object for the pairing.
// Pairing is algorithm of selection individuals for crossbreeding.
// Select random individuals from the population.
// let pairing = pairing::RandomPairing::new();
// Tournament method.
let families_count = population_size / 2;
let rounds_count = 5;
let pairing = pairing::Tournament::new(families_count).rounds_count(rounds_count);
// Crossbreeding algorithm.
// Make a Cross trait object. The bitwise crossing for float genes.
let single_cross = cross::FloatCrossExp::new();
let cross = cross::VecCrossAllGenes::new(Box::new(single_cross));
// Make a Mutation trait object.
// Use bitwise mutation (change random bits with given probability).
let mutation_probability = 15.0;
let mutation_gene_count = 3;
let single_mutation = mutation::BitwiseMutation::new(mutation_gene_count);
let mutation = mutation::VecMutation::new(mutation_probability, Box::new(single_mutation));
// Pre birth. Throw away new chlld chromosomes if their genes do not lies if given intervals.
let pre_births: Vec<Box<dyn genetic::PreBirth<Chromosomes>>> = vec![Box::new(
pre_birth::vec_float::CheckChromoInterval::new(intervals.clone()),
)];
// Stop checker. Stop criterion for genetic algorithm.
// Stop algorithm if the value of goal function will become less of 1e-4 or
// after 3000 generations (iterations).
let stop_checker = stopchecker::CompositeAny::new(vec![
Box::new(stopchecker::Threshold::new(1e-4)),
Box::new(stopchecker::MaxIterations::new(3000)),
]);
// Make a trait object for selection. Selection is killing the worst individuals.
// Kill all individuals if the value of goal function is NaN or Inf.
// Kill the worst individuals to population size remained unchanged.
let selections: Vec<Box<dyn genetic::Selection<Chromosomes>>> = vec![
Box::new(selection::KillFitnessNaN::new()),
Box::new(selection::LimitPopulation::new(population_size)),
];
// Make a loggers trait objects
let mut stdout_result = io::stdout();
let mut stdout_time = io::stdout();
let loggers: Vec<Box<dyn logging::Logger<Chromosomes>>> = vec![
Box::new(logging::ResultOnlyLogger::new(&mut stdout_result, 15)),
Box::new(logging::TimeLogger::new(&mut stdout_time)),
];
// Construct main optimizer struct
let mut optimizer = genetic::GeneticOptimizer::new(
Box::new(goal),
Box::new(stop_checker),
Box::new(creator),
Box::new(pairing),
Box::new(cross),
Box::new(mutation),
selections,
pre_births,
);
optimizer.set_loggers(loggers);
// Run genetic algorithm
optimizer.find_min();
}
Build all crates:
cargo build --release --all
Run example:
cargo run --example genetic-schwefel --release
Work result:
Solution:
420.974975585937500
420.969146728515625
420.955078125000000
421.004760742187500
420.999511718750000
421.007263183593750
420.987487792968750
421.001800537109375
420.980499267578125
420.991180419921875
421.001068115234375
420.942718505859375
420.964080810546875
420.951721191406250
420.961029052734375
Goal: 0.000488281250000
Iterations count: 3000
Time elapsed: 2352 ms
Also optlib library contains other optimization examples:
- genetic-paraboloid
- genetic-rastrigin
- genetic-rosenbrock
- genetic-schwefel
- genetic-schwefel-iterative
- genetic-schwefel-statistics
- particleswarm-paraboloid
- particleswarm-rastrigin
- particleswarm-rastrigin-statistics-inertia
- particleswarm-rosenbrock
- particleswarm-schwefel
- particleswarm-schwefel-iterative
- particleswarm-schwefel-statistics
- particleswarm-schwefel-statistics-full
- particleswarm-schwefel-statistics-inertia