-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
4dd7cd1
commit bc4683d
Showing
210 changed files
with
4,809 additions
and
927 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,236 @@ | ||
# # data(LyonIris) | ||
# # AnalysisFields <-c("Lden","NO2","PM25","VegHautPrt","Pct0_14","Pct_65","Pct_Img", | ||
# # "TxChom1564","Pct_brevet","NivVieMed") | ||
# # dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields]) | ||
# # queen <- spdep::poly2nb(LyonIris,queen=TRUE) | ||
# # Wqueen <- spdep::nb2listw(queen,style="W") | ||
# # result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE) | ||
# # | ||
# # library(compositions) | ||
# # | ||
# # x <- result$Belongings | ||
# # listw <- Wqueen | ||
# # | ||
# # | ||
# # | ||
# # cmp_geary <- function(x, listw){ | ||
# # | ||
# # cmp <- acomp(x) | ||
# # x_clr <- as.matrix(clr(cmp)) | ||
# # | ||
# # sums_ij <- sapply(1:nrow(x_clr), function(i){ | ||
# # ri <- x_clr[i,] | ||
# # diffs <- sapply(listw$neighbours[[i]], function(j){ | ||
# # rj <- x_clr[j,] | ||
# # sum((ri - rj) ** 2) | ||
# # }) | ||
# # sub_sum <- sum(listw$weights[[i]] * diffs) | ||
# # return(sub_sum) | ||
# # }) | ||
# # | ||
# # numerator <- (nrow(x_clr) - 1) * sum(sums_ij) | ||
# # S0 <- sum(sapply(listw$weights, sum)) | ||
# # x_bar <- colMeans(x_clr) | ||
# # diff_mean <- sum(c(sweep(x_clr, 2, x_bar, "-")**2)) | ||
# # | ||
# # C <- numerator / (2*S0 * diff_mean) | ||
# # | ||
# # } | ||
# | ||
# | ||
# spConsistency <- function(object, nblistw = NULL, window = NULL, nrep = 999, adj = FALSE, mindist = 1e-11, use_clr = FALSE) { | ||
# | ||
# if(inherits(object, "FCMres")){ | ||
# belongmat <- as.matrix(object$Belongings) | ||
# if(object$isRaster & is.null(window)){ | ||
# window <- object$window | ||
# if(is.null(window)){ | ||
# stop("impossible to find a window in the given object, please | ||
# specify one by hand.") | ||
# } | ||
# } | ||
# if(object$isRaster == FALSE & is.null(nblistw)){ | ||
# nblistw <- object$nblistw | ||
# } | ||
# }else{ | ||
# belongmat <- as.matrix(object) | ||
# } | ||
# | ||
# # if we are not in raster mode | ||
# | ||
# if(is.null(window)){ | ||
# | ||
# if(is.null(nblistw)){ | ||
# stop("The nblistw must be provided if spatial vector data is used") | ||
# } | ||
# weights <- nblistw$weights | ||
# neighbours <- nblistw$neighbours | ||
# ## calcul de l'inconsistence spatiale actuelle | ||
# | ||
# if(use_clr){ | ||
# belong_mat <- clr(acomp(belongmat)) | ||
# } | ||
# # we could aslo use the Aitchison distance (https://ima.udg.edu/~barcelo/index_archivos/Measures_of_difference__Clustering.pdf) | ||
# # this is simply done by calculating the clr transformation on the original data | ||
# # belongmat <- log(belongmat) | ||
# # belongmat <- sweep(belongmat, 1, rowMeans(belongmat), "-") | ||
# # belongmat <- as.matrix(belongmat) | ||
# | ||
# obsdev <- sapply(1:nrow(belongmat), function(i) { | ||
# row <- belongmat[i, ] | ||
# idneighbour <- neighbours[[i]] | ||
# neighbour <- belongmat[idneighbour, ] | ||
# if (length(idneighbour) == 1){ | ||
# neighbour <- t(as.matrix(neighbour)) | ||
# } | ||
# W <- weights[[i]] | ||
# # we are using here the euclidean distance | ||
# diff <- (neighbour-row[col(neighbour)])**2 * W | ||
# tot <- sum(rowSums(diff)) | ||
# return(tot) | ||
# }) | ||
# | ||
# totalcons <- sum(obsdev) | ||
# | ||
# ## simulation de l'inconsistance spatiale | ||
# belongmat <- t(belongmat) | ||
# n <- ncol(belongmat) | ||
# simulated <- vapply(1:nrep, function(d) { | ||
# belong2 <- belongmat[,sample(n)] | ||
# simvalues <- vapply(1:ncol(belong2), function(i) { | ||
# row <- belong2[,i] | ||
# idneighbour <- neighbours[[i]] | ||
# neighbour <- belong2[,neighbours[[i]]] | ||
# if (length(idneighbour) == 1){ | ||
# neighbour <- t(as.matrix(neighbour)) | ||
# } | ||
# W <- weights[[i]] | ||
# diff <- (neighbour-row) | ||
# tot <- sum(diff^2 * W) | ||
# return(tot) | ||
# }, FUN.VALUE = 1) | ||
# return(sum(simvalues)) | ||
# },FUN.VALUE = 1) | ||
# ratio <- totalcons / simulated | ||
# | ||
# # if we are using a raster mode. | ||
# }else{ | ||
# # we must calculate for each pixel its distance to its neighbours | ||
# # on the membership matrix. So we will calculate the distance for each | ||
# # raster in object$rasters and then sum them all group | ||
# rastnames <- names(object$rasters) | ||
# ok_names <- rastnames[grepl("group",rastnames, fixed = TRUE)] | ||
# rasters <- object$rasters[ok_names] | ||
# matrices <- lapply(rasters, terra::as.matrix, wide = TRUE) | ||
# mat_dim <- dim(matrices[[1]]) | ||
# | ||
# if(use_clr){ | ||
# big_mat <- do.call(cbind,lapply(matrices, c)) | ||
# big_mat <- clr(acomp(big_mat)) | ||
# matrices <- lapply(1:ncol(big_mat), function(i){ | ||
# mat <- big_mat[,i] | ||
# dim(mat) <- mat_dim | ||
# return(mat) | ||
# }) | ||
# } | ||
# | ||
# # applying the | ||
# | ||
# if(adj){ | ||
# dataset <- lapply(1:ncol(object$Data), function(ic){ | ||
# vec1 <- object$Data[,ic] | ||
# vec2 <- rep(NA,length(object$missing)) | ||
# vec2[object$missing] <- vec1 | ||
# rast <- object$rasters[[1]] | ||
# terra::values(rast) <- vec2 | ||
# mat <- terra::as.matrix(rast, wide = TRUE) | ||
# return(mat) | ||
# | ||
# }) | ||
# totalcons <- calc_raster_spinconsistency(matrices, window, adj, dataset, mindist = mindist) | ||
# | ||
# }else{ | ||
# totalcons <- calc_raster_spinconsistency(matrices,window) | ||
# } | ||
# | ||
# | ||
# # we must now do the same thing but with resampled values | ||
# warning("Calculating the permutation for the spatial inconsistency | ||
# when using raster can be long, depending on the raster size. | ||
# Note that the high number of cell in a raster reduces the need of | ||
# a great number of replications.") | ||
# # creating a vector of ids for each cell in raster | ||
# all_ids <- 1:terra::ncell(rasters[[1]]) | ||
# | ||
# # converting the matrices (columns of membership matrix) into 1d vectors | ||
# mem_vecs <- lapply(rasters, function(rast){ | ||
# mat <- terra::as.matrix(rast, wide = TRUE) | ||
# dim(mat) <- NULL | ||
# return(mat) | ||
# }) | ||
# | ||
# # if necessary, doing the same with the original data | ||
# if(adj){ | ||
# data_vecs <- lapply(dataset, function(mat){ | ||
# vec <- mat | ||
# dim(vec) <- NULL | ||
# return(vec) | ||
# }) | ||
# } | ||
# # extracting the dimension of the raster | ||
# #dim(terra::as.matrix(rasters[[1]])) | ||
# | ||
# # starting the simulations | ||
# simulated <- sapply(1:nrep, function(i){ | ||
# | ||
# # resampling the ids | ||
# Ids <- sample(all_ids) | ||
# | ||
# # resampling the matrices of memberships | ||
# new_matrices <- lapply(mem_vecs, function(vec){ | ||
# new_vec <- vec[Ids] | ||
# | ||
# # swapping the NA at their original place | ||
# val_na <- new_vec[!object$missing] | ||
# loc_na <- is.na(new_vec) | ||
# new_vec[!object$missing] <- NA | ||
# new_vec[loc_na] <- val_na | ||
# | ||
# dim(new_vec) <- mat_dim | ||
# return(new_vec) | ||
# }) | ||
# | ||
# if(adj){ | ||
# # resampling the matrices of the data | ||
# new_dataset <- lapply(data_vecs, function(vec){ | ||
# new_vec <- vec[Ids]; | ||
# | ||
# # swapping the NA at their original place | ||
# val_na <- new_vec[!object$missing] | ||
# loc_na <- is.na(new_vec) | ||
# new_vec[!object$missing] <- NA | ||
# new_vec[loc_na] <- val_na | ||
# | ||
# dim(new_vec) <- mat_dim | ||
# return(new_vec) | ||
# }) | ||
# # calculating the index value | ||
# inconsist <- calc_raster_spinconsistency(new_matrices, window, adj, new_dataset, mindist = mindist) | ||
# | ||
# }else{ | ||
# # calculating the index value | ||
# inconsist <- calc_raster_spinconsistency(new_matrices, window) | ||
# } | ||
# | ||
# | ||
# return(inconsist) | ||
# }) | ||
# ratio <- totalcons / simulated | ||
# } | ||
# | ||
# return(list(Mean = mean(ratio), Median = quantile(ratio, probs = c(0.5)), | ||
# prt05 = quantile(ratio, probs = c(0.05)), | ||
# prt95 = quantile(ratio, probs = c(0.95)), | ||
# samples = ratio, | ||
# sum_diff = totalcons)) | ||
# } |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file not shown.
Oops, something went wrong.