Skip to content
/ FuncTs Public

A functionalization approach to optimizing graph-level IR based tensor program.

Notifications You must be signed in to change notification settings

JimyMa/FuncTs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

89 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FuncTs:TorchScript Functionalization

  • paper correction
  • paper notation
    • Figure 3: In (c), the number before immut::Access, immut::Assign and tensorssa::Update is the line number in (d). We illustrate more details of Figure 3 in this README file.

Bulid from source

  • PyTorch is all you need to compile functs:
python -c "import torch"; echo $?
>>> 0
python setup.py develop --user
  • Supported PyTorch version: V2.1.0

We have discovered that numerous standard workloads are written using imperative tensor programs, which do not lend themselves well to direct kernel fusion. While the compute library developed by hardware vendors adequately supports pure function, computation-intensive operators, imperative tensor programs often contain excessive control flow and side effects due to tensor-level mutation (such as view and in-place operators), resulting in limited fusion scope. The following timeline illustrates the proportion of time dedicated to these aspects in eight different workloads:

proportation

Use FuncTs to perform functionalization

A simple example of functionalization beyond control flow is depicted as follows:

T

We split the algorithm into two steps:

  • Rewrite Mutation (c). The Rewrite Mutation step includes two key steps:
    • Pass Up. In the pass-up step, suppose v is a view of t, the algorithm traverses the view path from v to t. When each variable is visited, an x′ = immut::Assign(x, v′, [·]) operator is inserted into the program.
    • Pass Down. In the pass-down step, we traverse from the root node v to another branch that hasn't traversed by the pass-up step, while each variable is firstly visited, a v′ = immgt::Access(x′, [·]) operator is inserted. To annotate the tensor version for subsequent block propagation, a tensorssa::Update(v′, v) statement is generated at the same time.
  • Block Propagation (d). The Block Propagation step visits all generated tensorssa::Update(x′,x), propagating the tensor mutation beyond the control flow.

By these steps, we generate a new graph. Accordingly, we can explore a larger kernel fusion optimization space than the previous methods.

Tensor Access and Tensor Assign

As mentioned above, we generate Access and Assign operators during transformation. The Access operator is the immutable version of the view operator. The Assign operator is for generating immutable equivalent substitution of view and mutation combining with the Access operator. The figure below depicts the execution process of aten::view, immut::Access and immut::Assign operators.

view_access_assign

The Access and Assign operators are two abstractions of a series of operator instances, which are shown in the table below.

operator Access operator Assign Operator
aten::copy_ immut::Assign immut::Assign
aten::select immut::select immut::select_rev
aten::slice immut::slice immut::slice_rev
aten::squeeze immut::squeeze immut::unsqueeze
aten::unsqueeze immut::unsqueeze immut::squeeze
aten::view immut::view immut::view
aten::reshape immut::reshape immut::reshape
aten::expand immut::expand immut::expand_rev
aten::expand_as immut::expand_as immut::expand_as_rev
aten::repeat immut::repeat immut::repeat_rev
aten::index immut::index immut::index_rev

More Details

For learning or using FuncTs, you can functionalize the program step by step with our pass. The original python code is:

def func(a: torch.Tensor, b: torch.Tensor, n: int):
  a = a.clone()
  b = b.clone()
  for i in range(n):
    b[i] = b[i] + 1
  return b

We can dump the torch.Graph IR generated by torch.jit.script here.

graph(%a.1 : Tensor,
      %b.1 : Tensor,
      %n.1 : int):
  %28 : bool = prim::Constant[value=0]()
  %18 : int = prim::Constant[value=0]() # examples/get_started.py:14:11
  %12 : bool = prim::Constant[value=1]() # examples/get_started.py:13:2
  %7 : NoneType = prim::Constant()
  %20 : int = prim::Constant[value=1]() # examples/get_started.py:14:18
  %b.5 : Tensor = aten::clone(%b.1, %7) # examples/get_started.py:12:6
   = prim::Loop(%n.1, %12) # examples/get_started.py:13:2
    block0(%i.1 : int):
      %19 : Tensor = aten::select(%b.5, %18, %i.1) # examples/get_started.py:14:11
      %22 : Tensor = aten::add(%19, %20, %20) # examples/get_started.py:14:11
      %27 : Tensor = aten::select(%b.5, %18, %i.1) # examples/get_started.py:14:4
      %29 : Tensor = aten::copy_(%27, %22, %28) # examples/get_started.py:14:4
      -> (%12)
  return (%b.5)

The first step is Rewrite Mutation, which converts View and Mutation to equivalent Access and Assign operators.

# step 1: rewrite mutation
mutate_info = functs._C.TensorSSAMutateInfo()
functs._C._jit_pass_rewrite_mutation(jit_func.graph, mutate_info)
print("graph after rewrite mutation")
print(jit_func.graph)
print("mutated values: ")
print(mutate_info.mutValues)
print("mutated nodes: ")
print(mutate_info.mutNodes)

We define an object of TensorSSAMutateInfo to collect the mutated values and mutated nodes after functs._C._jit_pass_rewrite_mutation. The output isgraph after rewrite mutation

graph(%a.1 : Tensor,
      %b.1 : Tensor,
      %n.1 : int):
  %28 : bool = prim::Constant[value=0]()
  %18 : int = prim::Constant[value=0]() # examples/get_started.py:14:11
  %12 : bool = prim::Constant[value=1]() # examples/get_started.py:13:2
  %7 : NoneType = prim::Constant()
  %20 : int = prim::Constant[value=1]() # examples/get_started.py:14:18
  %b.5 : Tensor = aten::clone(%b.1, %7) # examples/get_started.py:12:6
   = prim::Loop(%n.1, %12) # examples/get_started.py:13:2
    block0(%i.1 : int):
      %40 : Tensor = immut::select(%b.5, %18, %i.1)
      %22 : Tensor = aten::add(%40, %20, %20) # examples/get_started.py:14:11
      %41 : Tensor = immut::select(%b.5, %18, %i.1)
      %42 : Tensor = immut::assign(%41, %22, %28)
      %43 : Tensor = immut::assign(%41, %22, %28)
      %44 : Tensor = immut::select_rev(%b.5, %43, %18, %i.1)
      %46 : Tensor = immut::select(%44, %18, %i.1)
      %45 : Tensor = immut::select(%44, %18, %i.1)
      %47 : Tensor = immut::assign(%45, %45, %28)
       = tssa::update(%44, %b.5)
       = tssa::update(%46, %40)
       = tssa::update(%45, %41)
       = tssa::update(%47, %42)
      -> (%12)
  return (%b.5)
mutated values:
[b.5 defined in (%b.5 : Tensor = aten::clone(%b.1, %7)),
 41 defined in (%41 : Tensor = immut::select(%b.5, %18, %i.1)),
 40 defined in (%40 : Tensor = immut::select(%b.5, %18, %i.1)),
 42 defined in (%42 : Tensor = immut::assign(%41, %22, %28))]

mutated nodes:
{40 defined in (%40 : Tensor = immut::select(%b.5, %18, %i.1)): [ = tssa::update(%46, %40)],
 42 defined in (%42 : Tensor = immut::assign(%41, %22, %28)): [ = tssa::update(%47, %42)],
 41 defined in (%41 : Tensor = immut::select(%b.5, %18, %i.1)): [ = tssa::update(%45, %41)],
 b.5 defined in (%b.5 : Tensor = aten::clone(%b.1, %7)): [ = tssa::update(%44, %b.5)]}

The next pass is functs._C.jit_pass_block_propagation:

# step 2: block propagation
functs._C._jit_pass_block_propagation(jit_func.graph, mutate_info)
print("graph after block propagation")
print(jit_func.graph)

We insert more tensorssa::Update nodes for functionalization beyond the control flow. (= tssa::update(%49, %b.5) and = tssa::update(%48, %b.5))

graph after block propagation
graph(%a.1 : Tensor,
      %b.1 : Tensor,
      %n.1 : int):
  %28 : bool = prim::Constant[value=0]()
  %18 : int = prim::Constant[value=0]() # examples/get_started.py:14:11
  %12 : bool = prim::Constant[value=1]() # examples/get_started.py:13:2
  %7 : NoneType = prim::Constant()
  %20 : int = prim::Constant[value=1]() # examples/get_started.py:14:18
  %b.5 : Tensor = aten::clone(%b.1, %7) # examples/get_started.py:12:6
  %48 : Tensor = prim::Loop(%n.1, %12, %b.5) # examples/get_started.py:13:2
    block0(%i.1 : int, %49 : Tensor):
       = tssa::update(%49, %b.5)
      %40 : Tensor = immut::select(%b.5, %18, %i.1)
      %22 : Tensor = aten::add(%40, %20, %20) # examples/get_started.py:14:11
      %41 : Tensor = immut::select(%b.5, %18, %i.1)
      %42 : Tensor = immut::assign(%41, %22, %28)
      %43 : Tensor = immut::assign(%41, %22, %28)
      %44 : Tensor = immut::select_rev(%b.5, %43, %18, %i.1)
      %46 : Tensor = immut::select(%44, %18, %i.1)
      %45 : Tensor = immut::select(%44, %18, %i.1)
      %47 : Tensor = immut::assign(%45, %45, %28)
       = tssa::update(%44, %b.5)
       = tssa::update(%46, %40)
       = tssa::update(%45, %41)
       = tssa::update(%47, %42)
      -> (%12, %b.5)
   = tssa::update(%48, %b.5)
  return (%b.5)

The tensorssa::Update indicates the version of values which need to be updated. functs._C._jit_pass_rename substitutes the origin version of the value (UpdateNode.input(1)) to the new version (UpdateNode.input(0)) after this update node (UpdateNode).

# step 3: rename
functs._C._jit_pass_rename(jit_func.graph)
print("graph after rename according tensorssa::Update")
print(jit_func.graph)
graph after rename according tensorssa::Update
graph(%a.1 : Tensor,
      %b.1 : Tensor,
      %n.1 : int):
  %28 : bool = prim::Constant[value=0]()
  %18 : int = prim::Constant[value=0]() # examples/get_started.py:14:11
  %12 : bool = prim::Constant[value=1]() # examples/get_started.py:13:2
  %7 : NoneType = prim::Constant()
  %20 : int = prim::Constant[value=1]() # examples/get_started.py:14:18
  %b.5 : Tensor = aten::clone(%b.1, %7) # examples/get_started.py:12:6
  %48 : Tensor = prim::Loop(%n.1, %12, %b.5) # examples/get_started.py:13:2
    block0(%i.1 : int, %49 : Tensor):
       = tssa::update(%49, %b.5)
      %40 : Tensor = immut::select(%49, %18, %i.1)
      %22 : Tensor = aten::add(%40, %20, %20) # examples/get_started.py:14:11
      %41 : Tensor = immut::select(%49, %18, %i.1)
      %42 : Tensor = immut::assign(%41, %22, %28)
      %43 : Tensor = immut::assign(%41, %22, %28)
      %44 : Tensor = immut::select_rev(%49, %43, %18, %i.1)
      %46 : Tensor = immut::select(%44, %18, %i.1)
      %45 : Tensor = immut::select(%44, %18, %i.1)
      %47 : Tensor = immut::assign(%45, %45, %28)
       = tssa::update(%44, %49)
       = tssa::update(%46, %40)
       = tssa::update(%45, %41)
       = tssa::update(%47, %42)
      -> (%12, %44)
   = tssa::update(%48, %44)
  return (%48)

After functs._C._jit_pass_rename, tensorssa::Update can be removed safely by functs._C._jit_pass_remove_update.

# step 4: remove update
functs._C._jit_pass_tensorssa_remove_update(jit_func.graph)
print("graph after remove update")
print(jit_func.graph)
graph after remove update
graph(%a.1 : Tensor,
      %b.1 : Tensor,
      %n.1 : int):
  %28 : bool = prim::Constant[value=0]()
  %18 : int = prim::Constant[value=0]() # examples/get_started.py:14:11
  %12 : bool = prim::Constant[value=1]() # examples/get_started.py:13:2
  %7 : NoneType = prim::Constant()
  %20 : int = prim::Constant[value=1]() # examples/get_started.py:14:18
  %b.5 : Tensor = aten::clone(%b.1, %7) # examples/get_started.py:12:6
  %48 : Tensor = prim::Loop(%n.1, %12, %b.5) # examples/get_started.py:13:2
    block0(%i.1 : int, %49 : Tensor):
      %40 : Tensor = immut::select(%49, %18, %i.1)
      %22 : Tensor = aten::add(%40, %20, %20) # examples/get_started.py:14:11
      %41 : Tensor = immut::select(%49, %18, %i.1)
      %44 : Tensor = immut::select_rev(%49, %22, %18, %i.1)
      %46 : Tensor = immut::select(%44, %18, %i.1)
      %45 : Tensor = immut::select(%44, %18, %i.1)
      -> (%12, %44)
  return (%48)

FuncTs ConvertToTensorSSA is completely compatible with other torchscript passes such as DCE, CES, Constant propagation, fusion, create autodiff subgraphs.

# step 5: cse, dce, constant_propagation
torch._C._jit_pass_cse(jit_func.graph)
torch._C._jit_pass_dce(jit_func.graph)
torch._C._jit_pass_constant_propagation(jit_func.graph)
print("after csd, dce and constant propagation")
jit_func.graph.alias_db().dump()
===1. GRAPH===
graph(%a.1 : Tensor,
      %b.1 : Tensor,
      %n.1 : int):
  %18 : int = prim::Constant[value=0]() # examples/get_started.py:14:11
  %12 : bool = prim::Constant[value=1]() # examples/get_started.py:13:2
  %7 : NoneType = prim::Constant()
  %20 : int = prim::Constant[value=1]() # examples/get_started.py:14:18
  %b.5 : Tensor = aten::clone(%b.1, %7) # examples/get_started.py:12:6
  %48 : Tensor = prim::Loop(%n.1, %12, %b.5) # examples/get_started.py:13:2
    block0(%i.1 : int, %49 : Tensor):
      %40 : Tensor = immut::select(%49, %18, %i.1)
      %22 : Tensor = aten::add(%40, %20, %20) # examples/get_started.py:14:11
      %44 : Tensor = immut::select_rev(%49, %22, %18, %i.1)
      -> (%12, %44)
  return (%48)

===2. ALIAS DB===
%49 points to: %b.5
%a.1 points to: WILDCARD for type Tensor
%48 points to: %44
%b.1 points to: WILDCARD for type Tensor

===3. Writes===

Functionalization of a more complicated case is shown as follows:

ControlDependency

  • Before functionalization
graph(%a.1 : Tensor,
      %b.1 : Tensor,
      %idx.1 : int):
  %30 : bool = prim::Constant[value=0]()
  %4 : NoneType = prim::Constant()
  %10 : int = prim::Constant[value=0]()
  %14 : int = prim::Constant[value=1]()
  %a.5 : Tensor = aten::clone(%a.1, %4)
  %b.5 : Tensor = aten::clone(%b.1, %4)
  %11 : bool = aten::ge(%idx.1, %10)
  %a : Tensor = prim::If(%11)
    block0():
      %a.9 : Tensor = aten::add(%a.5, %14, %14)
      %23 : Tensor = aten::select(%b.5, %10, %idx.1)
      %29 : Tensor = aten::select(%a.9, %10, %idx.1)
      %31 : Tensor = aten::copy_(%23, %29, %30)
      -> (%a.9)
    block1():
      %a.17 : Tensor = aten::sub(%a.5, %14, %14)
      %42 : int = aten::neg(%idx.1)
      %44 : Tensor = aten::select(%b.5, %10, %42)
      %51 : int = aten::neg(%idx.1)
      %53 : Tensor = aten::select(%a.17, %10, %51)
      %55 : Tensor = aten::copy_(%44, %53, %30)
      -> (%a.17)
  %64 : Tensor = aten::add(%a, %b.5, %14)
  return (%64)
  • After functionalization
graph(%a.35 : Tensor,
      %b.11 : Tensor,
      %idx.1 : int):
  %79 : NoneType = prim::Constant()
  %b.1 : Tensor = aten::clone(%b.11, %79)
  %a.1 : Tensor = aten::clone(%a.35, %79)
  %10 : int = prim::Constant[value=0]()
  %14 : int = prim::Constant[value=1]()
  %a.5 : Tensor = aten::clone(%a.1, %79)
  %b.5 : Tensor = aten::clone(%b.1, %79)
  %11 : bool = aten::ge(%idx.1, %10)
  %a : Tensor, %93 : Tensor = prim::If(%11)
    block0():
      %a.9 : Tensor = aten::add(%a.5, %14, %14)
      %29 : Tensor = aten::select(%a.9, %10, %idx.1)
      %86 : Tensor = immut::select_rev(%b.5, %29, %10, %idx.1)
      -> (%a.9, %86)
    block1():
      %a.17 : Tensor = aten::sub(%a.5, %14, %14)
      %42 : int = aten::neg(%idx.1)
      %53 : Tensor = aten::select(%a.17, %10, %42)
      %90 : Tensor = immut::select_rev(%b.5, %53, %10, %42)
      -> (%a.17, %90)
  %64 : Tensor = aten::add(%a, %93, %14)
  return (%64)
> **_NOTE:_**  For illustration, we canonicalize the code in *Figure* by adjusting the variable name by hand.

We construct several test cases, which show that our method can perform functionalization beyond the control flow.

Optimization

Vertical Optimization

We utilize PyTorch NNC to implement several view tensor expressions, which are part of a domain-specific language (DSL) that can be scheduled and automatically converted to device code, including CUDA. The code generation for these operators has been tested in test tensorexpr. Take a python code snippet as an example, the torch.nn.Module is

class Normalize(torch.nn.Module):
    def forward(self,
                src: torch.Tensor,
                mean: float, scale: float):
        # only inner-procedure is supported bynow.
        src = src.clone()
        # RGB to BGR
        dup = src.clone()
        dup[..., 0] = src[..., 2]
        dup[..., 2] = src[..., 0]
        return (dup - mean) * scale

and the torch.jit.script is

graph(%self : __torch__.Normalize,
      %src.1 : Tensor,
      %mean.1 : float,
      %scale.1 : float):
  %30 : int = prim::Constant[value=1]()
  %18 : bool = prim::Constant[value=0]()
  %12 : int = prim::Constant[value=-1]() # examples/kernel_fusion.py:13:22
  %5 : NoneType = prim::Constant()
  %11 : int = prim::Constant[value=2]() # examples/kernel_fusion.py:13:31
  %15 : int = prim::Constant[value=0]() # examples/kernel_fusion.py:13:17
  %src.5 : Tensor = aten::clone(%src.1, %5) # examples/kernel_fusion.py:10:14
  %dup.1 : Tensor = aten::clone(%src.5, %5) # examples/kernel_fusion.py:12:14
  %13 : Tensor = aten::select(%src.5, %12, %11) # examples/kernel_fusion.py:13:22
  %17 : Tensor = aten::select(%dup.1, %12, %15) # examples/kernel_fusion.py:13:8
  %19 : Tensor = aten::copy_(%17, %13, %18) # examples/kernel_fusion.py:13:8
  %22 : Tensor = aten::select(%src.5, %12, %15) # examples/kernel_fusion.py:14:22
  %25 : Tensor = aten::select(%dup.1, %12, %11) # examples/kernel_fusion.py:14:8
  %27 : Tensor = aten::copy_(%25, %22, %18) # examples/kernel_fusion.py:14:8
  %31 : Tensor = aten::sub(%dup.1, %mean.1, %30) # examples/kernel_fusion.py:15:16
  %33 : Tensor = aten::mul(%31, %scale.1) # examples/kernel_fusion.py:15:16
  return (%33)

The following code performs kernel fusion directly without TensorSSA.

# a copy of `torch._C._jit_pass_fuse_tensorexprs`
# but decoupled with TorchScript profiler guided optimization
# by a shape inference module
functs._C._jit_pass_fuse_tensorexpr(jit_g)
print(f"torch.jit.script fused graph:\n{jit_g}")

It generates TensorExprGroups with limited scope.

torch.jit.script fused graph:
graph(%self : __torch__.Normalize,
      %src.1 : Float(800, 1333, 3, device=cuda:0),
      %mean.1 : float,
      %scale.1 : float):
  %18 : bool = prim::Constant[value=0]()
  %12 : int = prim::Constant[value=-1]() # examples/kernel_fusion.py:14:22
  %11 : int = prim::Constant[value=2]() # examples/kernel_fusion.py:14:31
  %15 : int = prim::Constant[value=0]() # examples/kernel_fusion.py:14:17
  %dup.7 : Float(800, 1333, 3, strides=[3999, 3, 1], device=cuda:0), %src.11 : Float(800, 1333, 3, strides=[3999, 3, 1], device=cuda:0) = prim::TensorExprGroup_0(%src.1)
  %13 : Float(800, 1333, strides=[1333, 1], device=cuda:0) = aten::select(%src.11, %12, %11) # examples/kernel_fusion.py:14:22
  %17 : Float(800, 1333, strides=[1333, 1], device=cuda:0) = aten::select(%dup.7, %12, %15) # examples/kernel_fusion.py:14:8
  %19 : FloatTensor(device=cuda:0) = aten::copy_(%17, %13, %18) # examples/kernel_fusion.py:14:8
  %22 : Float(800, 1333, strides=[1333, 1], device=cuda:0) = aten::select(%src.11, %12, %15) # examples/kernel_fusion.py:15:22
  %25 : Float(800, 1333, strides=[1333, 1], device=cuda:0) = aten::select(%dup.7, %12, %11) # examples/kernel_fusion.py:15:8
  %27 : FloatTensor(device=cuda:0) = aten::copy_(%25, %22, %18) # examples/kernel_fusion.py:15:8
  %44 : Float(800, 1333, 3, strides=[3999, 3, 1], device=cuda:0) = prim::TensorExprGroup_1(%scale.1, %dup.7, %mean.1)
  return (%44)
with prim::TensorExprGroup_0 = graph(%src.1 : Float(800, 1333, 3, strides=[3999, 3, 1], device=cuda:0)):
  %4 : NoneType = prim::Constant()
  %src.11 : Float(800, 1333, 3, strides=[3999, 3, 1], device=cuda:0) = aten::clone(%src.1, %4) # examples/kernel_fusion.py:11:14
  %dup.7 : Float(800, 1333, 3, strides=[3999, 3, 1], device=cuda:0) = aten::clone(%src.11, %4) # examples/kernel_fusion.py:13:14
  return (%dup.7, %src.11)
with prim::TensorExprGroup_1 = graph(%scale.1 : float,
      %dup.1 : Float(800, 1333, 3, strides=[3999, 3, 1], device=cuda:0),
      %mean.1 : float):
  %5 : int = prim::Constant[value=1]()
  %6 : Float(800, 1333, 3, strides=[3999, 3, 1], device=cuda:0) = aten::sub(%dup.1, %mean.1, %5) # examples/kernel_fusion.py:16:16
  %2 : Float(800, 1333, 3, strides=[3999, 3, 1], device=cuda:0) = aten::mul(%6, %scale.1) # examples/kernel_fusion.py:16:16
  return (%2)

As a result of implicit tensor mutation, the aten::copy_ and aten::select operators cannot be fused to TensorExprGroup, which increases the task latency. If we perform TensorSSA and then kernel fusion, the aten::copy_ and aten::select can be converted to fusible and immutable operators.

functs_fn = functs.jit.script(Normalize().eval().cuda())
functs._C._jit_pass_fuse_tensorexpr(functs_g)
print(f"functs.jit.script fused graph:\n{functs_g}")
graph(%self : __torch__.___torch_mangle_0.Normalize,
      %src.1 : Float(800, 1333, 3, device=cuda:0),
      %mean.1 : float,
      %scale.1 : float):
  %37 : Float(800, 1333, 3, strides=[3999, 3, 1], device=cuda:0) = prim::TensorExprGroup_0(%scale.1, %mean.1, %src.1)
  return (%37)
with prim::TensorExprGroup_0 = graph(%scale.1 : float,
      %mean.1 : float,
      %src.1 : Float(800, 1333, 3, strides=[3999, 3, 1], device=cuda:0)):
  %5 : int = prim::Constant[value=1]()
  %27 : int = prim::Constant[value=0]()
  %34 : int = prim::Constant[value=2]()
  %35 : int = prim::Constant[value=-1]()
  %46 : NoneType = prim::Constant()
  %src.6 : Float(800, 1333, 3, strides=[3999, 3, 1], device=cuda:0) = aten::clone(%src.1, %46) # examples/kernel_fusion.py:11:14
  %dup.2 : Float(800, 1333, 3, strides=[3999, 3, 1], device=cuda:0) = aten::clone(%src.6, %46) # examples/kernel_fusion.py:13:14
  %31 : Float(800, 1333, strides=[1333, 1], device=cuda:0) = immut::select(%src.6, %35, %34)
  %24 : Float(800, 1333, 3, strides=[3999, 3, 1], device=cuda:0) = immut::select_rev(%dup.2, %31, %35, %27)
  %17 : Float(800, 1333, strides=[1333, 1], device=cuda:0) = immut::select(%src.6, %35, %27)
  %11 : Float(800, 1333, 3, strides=[3999, 3, 1], device=cuda:0) = immut::select_rev(%24, %17, %35, %34)
  %6 : Float(800, 1333, 3, strides=[3999, 3, 1], device=cuda:0) = aten::sub(%11, %mean.1, %5) # examples/kernel_fusion.py:16:16
  %2 : Float(800, 1333, 3, strides=[3999, 3, 1], device=cuda:0) = aten::mul(%6, %scale.1) # examples/kernel_fusion.py:16:16
  return (%2)

The functional part of the program can be represented as a direct acyclic graph (DAG). As a result, it can be converted to NNC directly. The figure below depicts the procedure of code generation:

normalized

The code can be generated by TorchScript NNC:

fusion_subgraph = list(functs_g.nodes())[0].g("Subgraph")
print(te.TensorExprKernel(fusion_subgraph).get_code_text())
#define NAN __int_as_float(0x7fffffff)
#define POS_INFINITY __int_as_float(0x7f800000)
#define NEG_INFINITY __int_as_float(0xff800000)


template<typename T>
__device__ T maximum(T a, T b) {
  return isnan(a) ? a : (a > b ? a : b);
}

template<typename T>
__device__ T minimum(T a, T b) {
  return isnan(a) ? a : (a < b ? a : b);
}

extern "C" __global__
void fused_clone_clone_sub_mul(double vscale_1, double vmean_1, float* tsrc_1, float* aten_mul) {
{
if ((long long)(threadIdx.x) + 512ll * (long long)(blockIdx.x)<3199200ll ? 1 : 0) {
    float v = __ldg(tsrc_1 + (((long long)(threadIdx.x) + 512ll * (long long)(blockIdx.x)) / 3999ll) * 3999ll + 3ll * ((((long long)(threadIdx.x) + 512ll * (long long)(blockIdx.x)) / 3ll) % 1333ll));
    float v_1 = __ldg(tsrc_1 + ((((long long)(threadIdx.x) + 512ll * (long long)(blockIdx.x)) / 3999ll) * 3999ll + 3ll * ((((long long)(threadIdx.x) + 512ll * (long long)(blockIdx.x)) / 3ll) % 1333ll)) + 2ll);
    float v_2 = __ldg(tsrc_1 + (long long)(threadIdx.x) + 512ll * (long long)(blockIdx.x));
    aten_mul[(long long)(threadIdx.x) + 512ll * (long long)(blockIdx.x)] = ((((long long)(threadIdx.x) + 512ll * (long long)(blockIdx.x)) % 3ll==2ll ? v : (((long long)(threadIdx.x) + 512ll * (long long)(blockIdx.x)) % 3ll==0ll ? v_1 : v_2)) - (float)(vmean_1)) * (float)(vscale_1);
  }}
}

Vertical fusion achieves significant speed up in this task:

functs.utils.evaluate_func(Normalize(),
                           [torch.rand(800, 1333, 3).cuda(), 0.0, 1.0],
                           name="eager",
                           run_duration=2.)
# eager: 9802 iters, min = 56.8us, max = 2.509ms, avg = 204.1us

functs.utils.evaluate_func(torch.jit.script(Normalize()),
                           [torch.rand(800, 1333, 3).cuda(), 0.0, 1.0],
                           name="jit",
                           run_duration=2.)
# jit: 13400 iters, min = 35.81us, max = 569.4us, avg = 149.3us

functs.utils.evaluate_func(functs.jit.script(Normalize()),
                           [torch.rand(800, 1333, 3).cuda(), 0.0, 1.0],
                           name="functs",
                           run_duration=2.)
# functs: 56602 iters, min = 11.94us, max = 5.817ms, avg = 35.33us

Horizontal Parallelization

We extend NNC to support horizontal parallelization, pure function inner the loop without loop-carried dependency can be fused to one kernel and run simultaneously. Taking a snippet in the actual scenario as an example, this code appears in the post-processing stage of computer vision detection networks. It involves numerous tensor view and tensor copy operations.

class MultiScaleBboxProcess(torch.nn.Module):
    def decode_bboxes(self, bboxes, pred_bboxes, stride: float):
        # assert pred_bboxes.size(-1) == bboxes.size(-1) == 4
        xy_centers = (bboxes[..., :2] + bboxes[..., 2:]) * 0.5 + (
            pred_bboxes[..., :2] - 0.5
        ) * stride
        whs = (bboxes[..., 2:] - bboxes[..., :2]) * 0.5 * pred_bboxes[..., 2:].exp()
        decoded_bboxes = torch.stack(
            (
                xy_centers[..., 0] - whs[..., 0],
                xy_centers[..., 1] - whs[..., 1],
                xy_centers[..., 0] + whs[..., 0],
                xy_centers[..., 1] + whs[..., 1],
            ),
            dim=-1,
        )
        return decoded_bboxes.clone()

    def forward(
        self,
        bboxes_list: List[torch.Tensor],
        pred_bboxes_list: List[torch.Tensor],
        stride_list: List[float],
    ):
        outs = []
        for bboxes, pred_bboxes, stride in zip(
            bboxes_list, pred_bboxes_list, stride_list
        ):
            out = self.decode_bboxes(bboxes, pred_bboxes, stride)
            outs.append(out)
        return outs

Since the loops are independent of each other, after eliminating the side effects caused by tensor mutation, it can be further parallelized at the graph-IR level in a horizontal direction.

graph(%self : __torch__.MultiScaleBboxProcess,
      %bboxes_list.1 : Tensor[],
      %pred_bboxes_list.1 : Tensor[],
      %stride_list.1 : float[]):
  %120 : int = prim::Constant[value=3]()
  %77 : int = prim::Constant[value=1]() # pmap.py:91:32
  %78 : int = prim::Constant[value=0]() # pmap.py:90:32
  %79 : float = prim::Constant[value=0.5]() # pmap.py:84:59
  %80 : int = prim::Constant[value=2]() # pmap.py:84:35
  %81 : int = prim::Constant[value=-1]() # pmap.py:84:22
  %82 : NoneType = prim::Constant()
  %150 : Float(*, 4, device=cuda:0)[] = tssa::ParallelFunctor_0[parallel_degree=3, is_parallel_map=1, is_parallel_args=[1, 1, 1], input_refine_types=[Float(*, 4, device=cuda:0), Float(*, 4, device=cuda:0), float]](%bboxes_list.1, %pred_bboxes_list.1, %stride_list.1)
  return (%150)
with tssa::ParallelFunctor_0 = graph(%0 : int,
      %1 : Float(*, 4, device=cuda:0),
      %2 : Float(*, 4, device=cuda:0),
      %3 : float):
  %32 : float = prim::Constant[value=0.5]() # pmap.py:84:59
  %35 : int = prim::Constant[value=2]() # pmap.py:84:35
  %45 : int = prim::Constant[value=0]() # pmap.py:90:32
  %59 : int = prim::Constant[value=1]() # pmap.py:91:32
  %62 : int = prim::Constant[value=-1]() # pmap.py:84:22
  %64 : NoneType = prim::Constant()
  %4 : Float(*, 2, device=cuda:0) = aten::slice(%1, %62, %64, %35, %59) # pmap.py:84:22
  %9 : Float(*, 2, device=cuda:0) = aten::slice(%1, %62, %35, %64, %59) # pmap.py:84:40
  %14 : Float(*, 2, device=cuda:0) = aten::add(%4, %9, %59) # pmap.py:84:22
  %16 : Float(*, 2, device=cuda:0) = aten::mul(%14, %32) # pmap.py:84:22
  %18 : Float(*, 2, device=cuda:0) = aten::slice(%2, %62, %64, %35, %59) # pmap.py:85:12
  %23 : Float(*, 2, device=cuda:0) = aten::sub(%18, %32, %59) # pmap.py:85:12
  %26 : Float(*, 2, device=cuda:0) = aten::mul(%23, %3) # pmap.py:85:12
  %xy_centers.2 : Float(*, 2, device=cuda:0) = aten::add(%16, %26, %59) # pmap.py:84:22
  %29 : Float(*, 2, device=cuda:0) = aten::sub(%9, %4, %59) # pmap.py:87:15
  %31 : Float(*, 2, device=cuda:0) = aten::mul(%29, %32) # pmap.py:87:15
  %33 : Float(*, 2, device=cuda:0) = aten::slice(%2, %62, %35, %64, %59) # pmap.py:87:58
  %38 : Float(*, 2, device=cuda:0) = aten::exp(%33) # pmap.py:87:58
  %whs.2 : Float(*, 2, device=cuda:0) = aten::mul(%31, %38) # pmap.py:87:15
  %40 : Float(*, device=cuda:0) = immut::select(%xy_centers.2, %62, %45)
  %43 : Float(*, device=cuda:0) = immut::select(%whs.2, %62, %45)
  %46 : Float(*, device=cuda:0) = aten::sub(%40, %43, %59) # pmap.py:90:16
  %48 : Float(*, device=cuda:0) = immut::select(%xy_centers.2, %62, %59)
  %51 : Float(*, device=cuda:0) = immut::select(%whs.2, %62, %59)
  %54 : Float(*, device=cuda:0) = aten::sub(%48, %51, %59) # pmap.py:91:16
  %56 : Float(*, device=cuda:0) = aten::add(%40, %43, %59) # pmap.py:92:16
  %58 : Float(*, device=cuda:0) = aten::add(%48, %51, %59) # pmap.py:93:16
  %60 : Tensor[] = prim::ListConstruct(%46, %54, %56, %58)
  %decoded_bboxes.2 : Float(*, 4, device=cuda:0) = aten::stack(%60, %62) # pmap.py:88:25
  %out.5 : Float(*, 4, device=cuda:0) = aten::clone(%decoded_bboxes.2, %64) # pmap.py:97:15
  return (%out.5)
jit: 5276 iters, min = 351.6us, max = 2.426ms, avg = 379.1us
functs unroll: 75260 iters, min = 24.88us, max = 3.258ms, avg = 26.57us
functs pmap: 106829 iters, min = 17.59us, max = 3.266ms, avg = 18.72us

Evaluation

Speed Up

The performance speed-up is shown as follows:

latency

Kernel launch counts

The kernel counts performance is shown as follows:

kernel launch

After functionalization, our performance of kernel launch is better than TorchScript + NNC without Tensor in all workloads. Specifically, compared with TorchDynamo + TorchInductor, the performance boost of kernel launch in NASRNN, seq2seq and Attention is not obvious because TorchDynamo is a tracing-based jit and expands the control flow by unrolling, which has more fusion scope than TorchScipt frontend.

Scalability

  • In different batch sizes

scalability batch size

  • in different sequence length

seq length

Latency with CUDA Graph

kernel launch

CUDA Graphs, which made its debut in CUDA 10, let a series of CUDA kernels be defined and encapsulated as a single unit, i.e., a graph of operations, rather than a sequence of individually-launched operations. We profile the speedup w.r.t. PyTorch Eager in different iters per graph capture. We select NASRNN, Attention and LSTM because other workloads cannot be captured as a whole graph because of unsupported operators and structures. The figure above shows that all compilation pipelines can equally speed up by CUDA Graph.

About

A functionalization approach to optimizing graph-level IR based tensor program.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages