Before training, please ensure the path (namely ${root_of_clone}) is added in your PYTHONPATH, e.g.
export PYTHONPATH=$PYTHONPATH:${root_of_clone}
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$1 --node_rank=$2 SimDis/tools/run_SimDis.py \
--distributed -d 0-7 --rank $2 --word_size $1 \
--exp_file SimDis/exps/arxiv/base_exp_simDis.py \
--optimizer LARS --syncBN --epochs 1000 \
--method SimDis_teacher \
--model_s resnet50.s_dv
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$1 --node_rank=$2 SimDis/tools/run_SimDis.py \
--distributed -d 0-7 --rank $2 --word_size $1 \
--exp_file SimDis/exps/arxiv/base_exp_simDis.py \
--optimizer LARS --syncBN --epochs 1000 \
--method SimDis_off \
--model_s resnet18.s_dv.sema_sv.sema_dv.t_sv.t_dv.tema_sv.tema_dv \
--model_t resnet50.ttemadv \
--offline \
--offline_resume path_to_teacher/teacher_ckpt.pth.tar
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$1 --node_rank=$2 SimDis/tools/run_SimDis.py \
--distributed -d 0-7 --rank $2 --word_size $1 \
--exp_file SimDis/exps/arxiv/base_exp_simDis.py \
--optimizer LARS --syncBN --epochs 1000 \
--method SimDis_on \
--model_s resnet18.s_dv.sema_sv.sema_dv.t_sv.t_dv.tema_sv.tema_dv \
--model_t resnet50.ttemadv
Note: the choice for the argument 'model_s':
2v: resnet18.sema_dv.tema_dv
7v: resnet18.s_dv.sema_sv.sema_dv.t_sv.t_dv.tema_sv.tema_dv
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$1 --node_rank=$2 SimDis/tools/run_SimDis.py \
--distributed -d 0-7 --rank $2 --word_size $1 \
--exp_file SimDis/exps/arxiv/linear_eval_exp_simDis.py \
--optimizer LARS --syncBN \
--method SimDis_linear \
--model_s resnet18.s_dv.sema_sv.sema_dv.t_sv.t_dv.tema_sv.tema_dv \
--linear \
Contact: jindong.gu@outlook.com
Acknowledgements and Reference: Our Code is based on the following git repo: https://github.com/zengarden/momentum2-teacher