-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added the recently released Llama 3.3 70B Instruct model information.
- Loading branch information
Showing
1 changed file
with
95 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
{ | ||
"canonical_model_id": null, | ||
"fine_tuned_from_model_id": null, | ||
"name": "Llama 3.3 70B Instruct", | ||
"description": "Llama 3.3 is a multilingual large language model optimized for dialogue use cases across multiple languages. It is a pretrained and instruction-tuned generative model with 70 billion parameters, outperforming many open-source and closed chat models on common industry benchmarks. Llama 3.3 supports a context length of 128,000 tokens and is designed for commercial and research use in multiple languages.", | ||
"release_date": "2024-12-06", | ||
"input_context_size": 128000, | ||
"output_context_size": 128000, | ||
"license": "Llama 3.3 Community License Agreement", | ||
"multimodal": false, | ||
"web_hydrated": false, | ||
"knowledge_cutoff": "2023-12", | ||
"api_ref_link": "https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct", | ||
"playground_link": "https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct", | ||
"paper_link": null, | ||
"scorecard_blog_link": null, | ||
"repo_link": "https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct", | ||
"weights_link": "https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct", | ||
"param_count": 70000000000, | ||
"training_tokens": 15000000000000, | ||
"qualitative_metrics": [ | ||
{ | ||
"dataset_name": "MMLU", | ||
"score": 0.86, | ||
"is_self_reported": true, | ||
"analysis_method": "0-shot CoT", | ||
"date_recorded": "2024-12-06", | ||
"source_link": "https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/MODEL_CARD.md" | ||
}, | ||
{ | ||
"dataset_name": "MMLU Pro", | ||
"score": 0.689, | ||
"is_self_reported": true, | ||
"analysis_method": "0-shot CoT", | ||
"date_recorded": "2024-12-06", | ||
"source_link": "https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/MODEL_CARD.md" | ||
}, | ||
{ | ||
"dataset_name": "IFEval", | ||
"score": 0.921, | ||
"is_self_reported": true, | ||
"analysis_method": "Internal Evaluation", | ||
"date_recorded": "2024-12-06", | ||
"source_link": "https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/MODEL_CARD.md" | ||
}, | ||
{ | ||
"dataset_name": "GPQA Diamond", | ||
"score": 0.505, | ||
"is_self_reported": true, | ||
"analysis_method": "0-shot CoT", | ||
"date_recorded": "2024-12-06", | ||
"source_link": "https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/MODEL_CARD.md" | ||
}, | ||
{ | ||
"dataset_name": "HumanEval", | ||
"score": 0.884, | ||
"is_self_reported": true, | ||
"analysis_method": "Internal Evaluation", | ||
"date_recorded": "2024-12-06", | ||
"source_link": "https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/MODEL_CARD.md" | ||
}, | ||
{ | ||
"dataset_name": "MBPP EvalPlus", | ||
"score": 0.876, | ||
"is_self_reported": true, | ||
"analysis_method": "Internal Evaluation", | ||
"date_recorded": "2024-12-06", | ||
"source_link": "https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/MODEL_CARD.md" | ||
}, | ||
{ | ||
"dataset_name": "MATH (CoT)", | ||
"score": 0.77, | ||
"is_self_reported": true, | ||
"analysis_method": "0-shot CoT", | ||
"date_recorded": "2024-12-06", | ||
"source_link": "https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/MODEL_CARD.md" | ||
}, | ||
{ | ||
"dataset_name": "BFCL v2", | ||
"score": 0.773, | ||
"is_self_reported": true, | ||
"analysis_method": "Internal Evaluation", | ||
"date_recorded": "2024-12-06", | ||
"source_link": "https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/MODEL_CARD.md" | ||
}, | ||
{ | ||
"dataset_name": "MGSM", | ||
"score": 0.911, | ||
"is_self_reported": true, | ||
"analysis_method": "Internal Evaluation", | ||
"date_recorded": "2024-12-06", | ||
"source_link": "https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/MODEL_CARD.md" | ||
} | ||
] | ||
} |