Skip to content

Inception ResNetV2 Model for ODIR challenge

Latest
Compare
Choose a tag to compare
@JordiCorbilla JordiCorbilla released this 26 Jun 17:09
· 28 commits to master since this release
24c2012

This release contains the training log, results, and also the model weight in h5 format.

Training Conditions:

  • Data Augmentation.
  • Transfer learning using ImageNet weights.
  • All layers are trained.
  • Optimizer = SGD lr=0.001, decay=1e-6, momentum=0.9, nesterov=False

The results of this model are as follows:

Inception ResNetV2

Training:

  • loss: 0.3823
  • accuracy: 0.8906
  • precision: 0.5723
  • recall: 0.4950
  • AUC: 0.8347

Validation:

  • loss : 0.3409378457069397
  • accuracy : 0.890625
  • precision : 0.57225436
  • recall : 0.495
  • auc : 0.8346987

Final Score:

  • Kappa score: 0.46929492039423804
  • F-1 score: 0.890625
  • AUC value: 0.8381830357142857
  • Final Score: 0.7327009853695078

Changes in the model:

# Metrics
defined_metrics = [
    tf.keras.metrics.BinaryAccuracy(name='accuracy'),
    tf.keras.metrics.Precision(name='precision'),
    tf.keras.metrics.Recall(name='recall'),
    tf.keras.metrics.AUC(name='auc'),
]

# Added a new dense layer
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation='relu')(x)
predictions = Dense(num_classes, activation='sigmoid')(x)

sgd = SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
x.compile(optimizer=sgd, loss='binary_crossentropy', metrics=defined_metrics)