Report containing the code and the report of the projet 5 PSEUDOINVERSE-GUIDED DIFFUSION MODELS FOR INVERSE PROBLEMS of Generative Models for image @ MVA (B. GALERNE & A. LECLAIRE)
Generative_modeling_project/
├── README.md
├── init.ipynb
├── setup.py
├── data/
│ └── __init__.py
├── figs/
│ └── __init__.py
├── ntbk/
│ ├── __init__.py
│ ├── evaluator.ipynb
│ └── tp_6.ipynb
├── src/
│ ├── __init__.py
│ ├── ddpm.py
│ ├── eval.py
│ ├── h_fcn.py
│ ├── h_utils.py
│ ├── pigdm.py
│ └── utils.py
└── tests/
├── __init__.py
└── test.ipynb
- src: contains all the function of the project
- figs: contains some outputs of the model
- tests: sandbox with jupyter notebooks
- ntbk: notebooks to present our main results and how to reproduce them
- data: containing all the data and the pre trained models
First, please run:
chmod +x init_repo.shThen
./init_repo.sh
from a terminal. Or simply run the whole notebook init.ipynb to download the packages, the pre-trained models and the data
To reproduce the experiments, you can either start the files in ntbk/ and run them or execute the following commands
cd scriptsConfig the parameters on the file config.yaml then run:
python evaluator.py/!\ Important: In the notebooks and script, we refer to
The official implementation of $\Pi$GDM can be found here
