Skip to content

Commit

Permalink
Merge pull request #125 from nomadbl/fix_histogram_logger_interface
Browse files Browse the repository at this point in the history
Fix logger interface for histograms
  • Loading branch information
nomadbl authored Jul 25, 2023
2 parents a79d8bd + 85de35a commit 3d9c1a5
Show file tree
Hide file tree
Showing 8 changed files with 22 additions and 69 deletions.
2 changes: 1 addition & 1 deletion docs/src/custom_behaviour.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ value is sent to:

- `::AbstractVector{<:Real}` -> [Histogram backend](https://www.tensorflow.org/guide/tensorboard_histograms) as a vector
- `::StatsBase.Histogram` -> [Histogram backend](https://www.tensorflow.org/guide/tensorboard_histograms)
- `(bin_edges, weights)::Tuple{AbstractVector,AbstractVector}` where `length(bin_edges)==length(weights)+1`, is interpreted as an histogram. (*Will be deprecated.* Please use `TBHistogram(edges, weights)` for this).
<!-- - `(bin_edges, weights)::Tuple{AbstractVector,AbstractVector}` where `length(bin_edges)==length(weights)+1`, is interpreted as an histogram. (*Will be deprecated.* Please use `TBHistogram(edges, weights)` for this). -->
- `::Real` -> Scalar backend
- `::AbstractArray{<:Colorant}` -> [Image backend](https://www.tensorflow.org/tensorboard/r2/image_summaries)
- `::Any` -> Text Backend
Expand Down
2 changes: 1 addition & 1 deletion docs/src/extending_behaviour.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ At the end of this step, every pair in `objects` will be logged to a specific
backend, according to the following rules:

- `::AbstractVector{<:Real}` -> [Histogram backend](https://www.tensorflow.org/guide/tensorboard_histograms) as a vector
- `::Tuple{AbstractVector,AbstractVector}` [Histogram backend](https://www.tensorflow.org/guide/tensorboard_histograms) as an histogram
<!-- - `::Tuple{AbstractVector,AbstractVector}` [Histogram backend](https://www.tensorflow.org/guide/tensorboard_histograms) as an histogram -->
- `::Real` -> Scalar backend
- `::AbstractArray{<:Colorant}` -> [Image backend](https://www.tensorflow.org/tensorboard/r2/image_summaries)
- `::Any` -> Text Backend
Expand Down
2 changes: 1 addition & 1 deletion docs/src/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -111,7 +111,7 @@ at [Reading back TensorBoard data](@ref)
We also support logging custom types from a the following third-party libraries:
- [Plots.jl](https://github.com/JuliaPlots/Plots.jl): the `Plots.Plot` type will be rendered to PNG at the resolution specified by the object and logged as an image
- [PyPlot.jl](https://github.com/JuliaPy/PyPlot.jl): the `PyPlot.Figure` type will be rendered to PNG at the resolution specified by the object and logged as an image
- [Gadfly.jl](https://github.com/GiovineItalia/Gadfly.jl) type will be rendered to PNG at the resolution specified by the object and logged as an image. `Cairo` and `Fontconfig` packages must be imported for this functionality to work as it is required by `Gadfly`.
- [Gadfly.jl](https://github.com/GiovineItalia/Gadfly.jl): the `Gadfly.Plot` type will be rendered to PNG at the resolution specified by the object and logged as an image. `Cairo` and `Fontconfig` packages must be imported for this functionality to work as it is required by `Gadfly`.
- [Tracker.jl](https://github.com/FluxML/Tracker.jl): the `TrackedReal` and `TrackedArray` types will be logged as vector data
- [ValueHistories.jl](https://github.com/JuliaML/ValueHistories.jl): the `MVHistory` type is used to store the deserialized content of .proto files.

Expand Down
9 changes: 5 additions & 4 deletions examples/Histograms.jl
Original file line number Diff line number Diff line change
Expand Up @@ -10,9 +10,10 @@ with_logger(logger) do
x0 = 0.5+i/30; s0 = 0.5/(i/20);
edges = collect(-5:0.1:5)
centers = collect(edges[1:end-1] .+0.05)
histvals = [exp(-((c-x0)/s0)^2) for c = centers]
histvals = s0 * randn(length(centers)) .+ x0
data_tuple = (edges, histvals)
@info "histogram/loggerinterface" autobin=rand(10).+0.1*i manualbin=data_tuple
@info "histogram/loggerinterface" autobin=s0 .* randn(100) .+ x0
@info "histogram/loggerinterface" manualbin=data_tuple
end
end

Expand All @@ -21,8 +22,8 @@ for i in 1:100
x0 = 0.5+i/30; s0 = 0.5/(i/20);
edges = collect(-5:0.1:5)
centers = collect(edges[1:end-1] .+0.05)
histvals = [exp(-((c-x0)/s0)^2) for c = centers]
histvals = s0 * randn(length(centers)) .+ x0
data_tuple = (edges, histvals)
log_histogram(logger, "histogram/explicitinterface/autobin", rand(10).+0.1*i, step = i) #automatic bins
log_histogram(logger, "histogram/explicitinterface/autobin", s0 .* randn(100) .+ x0, step = i) #automatic bins
log_histogram(logger, "histogram/explicitinterface/manualbin", data_tuple, step = i) #manual bins
end
12 changes: 0 additions & 12 deletions src/Deserialization/histograms.jl
Original file line number Diff line number Diff line change
@@ -1,16 +1,4 @@
function deserialize_histogram_summary(summary::Summary_Value)
# custom deserialization
if hasproperty(summary, :metadata)
histo = summary.value.value
if summary.metadata.plugin_data.plugin_name == TB_PLUGIN_JLARRAY_NAME
val = reshape(histo.bucket,
reinterpret(Int,
summary.metadata.plugin_data.content)...)

return val
end
end

# deserialize histogramproto
hist_proto = summary.value.value
bin_edges = similar(hist_proto.bucket_limit, length(hist_proto.bucket_limit)+1)
Expand Down
40 changes: 7 additions & 33 deletions src/Loggers/LogHistograms.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,8 @@ be used to bin the data.
function log_histogram(logger::TBLogger, name::AbstractString, (bins,weights)::Tuple{AbstractVector, AbstractArray};
step=nothing)
weights = collect(vec(weights))
summ = SummaryCollection(histogram_summary(name, collect(bins), weights))
hist = fit(Histogram, weights, bins)
summ = SummaryCollection(histogram_summary(name, hist))
write_event(logger.file, make_event(logger, summ, step=step))
end

Expand All @@ -24,27 +25,22 @@ Bins the values found in `data` and logs them as an histogram under the tag
"""
function log_histogram(logger::TBLogger, name::AbstractString, data::AbstractArray;
step=nothing)
data = vec(data)
hvals = fit(Histogram, data)
summ = SummaryCollection(histogram_summary(name, collect(hvals.edges[1]), hvals.weights))
data = collect(vec(data))
hist = fit(Histogram, data)
summ = SummaryCollection(histogram_summary(name, hist))
write_event(logger.file, make_event(logger, summ, step=step))
end

"""
log_vector(logger, name, data::Vector; step=step(logger))
Logs the vector found in `data` as an histogram under the name `name`.
"""
function log_vector(logger::TBLogger, name::AbstractString, data::AbstractVector; step=nothing)
summ = SummaryCollection(histogram_summary(name, collect(0:length(data)),data))
hist = Histogram(collect(0:length(data)), data)
summ = SummaryCollection(histogram_summary(name, hist))
write_event(logger.file, make_event(logger, summ, step=step))
end

function histogram_summary(name::AbstractString, edges::AbstractVector{<:Number}, hist_vals::AbstractVector{<:Number})
@assert length(edges) == length(hist_vals)+1
return histogram_summary(name, Histogram(edges, hist_vals))
end

function histogram_summary(name::AbstractString, hist::Histogram{T,1}) where T
edges = first(hist.edges)
hist_vals = hist.weights
Expand All @@ -59,25 +55,3 @@ function histogram_summary(name::AbstractString, hist::Histogram{T,1}) where T
hist_vals)
return Summary_Value(name, name, nothing, OneOf(:histo, hp))
end

# Writes to an Histogram summary the flattened version of the array.
# Also stores the shape of the array as a field in a plugin, which allows to
# reconstruct the original shape when read back into Julia
function histogram_arr_summary(name::AbstractString, tensor::AbstractArray)

smpd = SummaryMetadata_PluginData(TB_PLUGIN_JLARRAY_NAME, reinterpret(UInt8, collect(size(tensor))))
sm = SummaryMetadata(smpd, name, "", DataClass.DATA_CLASS_TENSOR)

num = length(tensor)
edges = collect(0:num)
histsum = sum(tensor)
histsumsqr = sum(tensor.^2)
hp = HistogramProto(minimum(edges), maximum(edges),
num,
histsum,
histsumsqr,
edges[2:end],
vec(tensor))

return Summary_Value(name, name, sm, OneOf(:histo, hp))
end
13 changes: 1 addition & 12 deletions src/logger_dispatch.jl
Original file line number Diff line number Diff line change
Expand Up @@ -79,18 +79,7 @@ summary_impl(name, value::Any) = text_summary(name, value)
preprocess(name, hist::Histogram{<:Any,1}, data) = push!(data, name=>hist)
summary_impl(name, hist::Histogram) = histogram_summary(name, hist)

# TODO: maybe deprecate? tuple means histogram (only if bins/weights match)
function preprocess(name, (bins,weights)::Tuple{AbstractVector,AbstractVector}, data)
# if ... this is an histogram
if length(bins) == length(weights)+1
return preprocess(name, Histogram(bins,weights), data)
end
preprocess(name*"/1", bins, data)
preprocess(name*"/2", weights, data)
end

preprocess(name, val::AbstractArray{<:Real}, data) = push!(data, name=>val)
summary_impl(name, val::AbstractArray{<:Real}) = histogram_arr_summary(name, val)
preprocess(name, val::AbstractArray{<:Real}, data) = return preprocess(name, fit(Histogram, collect(vec(val))), data)

# Split complex numbers into real/complex pairs
preprocess(name, val::AbstractArray{<:Complex}, data) = push!(data, name*"/re"=>real.(val), name*"/im"=>imag.(val))
Expand Down
11 changes: 6 additions & 5 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ using TestImages
using ImageCore
using FileIO
using LightGraphs
using StatsBase: fit, Histogram

ENV["DATADEPS_ALWAYS_ACCEPT"] = true
ENV["GKSwstype"] = "100"
Expand Down Expand Up @@ -70,15 +71,15 @@ end
centers = collect(edges[1:end-1] .+0.05)
histvals = [exp(-((c-x0)/s0)^2) for c=centers]
data_tuple = (edges, histvals)

ss = TensorBoardLogger.histogram_summary("test", edges, histvals)
hist = fit(Histogram, histvals, edges)
ss = TensorBoardLogger.histogram_summary("test", hist)
@test isa(ss, TensorBoardLogger.Summary_Value)
@test ss.tag == "test"
@test isa(ss.value.value, TensorBoardLogger.HistogramProto)
@test ss.value.value.min == minimum(edges)
@test ss.value.value.max == maximum(edges)
@test all(ss.value.value.bucket_limit .== edges[2:end])
@test all(ss.value.value.bucket .== histvals)
@test ss.value.value.bucket == hist.weights

log_histogram(logger, "hist/cust", data_tuple, step=step)
log_histogram(logger, "hist/cust", rand(100), step=step)
Expand All @@ -93,7 +94,7 @@ end
vals = rand(10)
@test data == preprocess("test1", vals, data)
@test first(data[1]) == "test1"
@test last(data[1]) == vals
@test last(data[1]) == fit(Histogram, collect(vec(vals)))

vals = rand(ComplexF32, 10)
preprocess("test2", vals, data)
Expand All @@ -104,7 +105,7 @@ end

vals = rand(10, 10)
preprocess("test2", vals, data)
@test last(data[4]) == vals
@test last(data[4]) == fit(Histogram, collect(vec(vals)))

end

Expand Down

2 comments on commit 3d9c1a5

@oxinabox
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request created: JuliaRegistries/General/90371

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:

git tag -a v0.1.22 -m "<description of version>" 3d9c1a554a08179785459ad7b83bce0177b90275
git push origin v0.1.22

Please sign in to comment.