-
Notifications
You must be signed in to change notification settings - Fork 20
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
241 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,241 @@ | ||
########################################### | ||
# Unconstrained optimization | ||
########################################### | ||
|
||
f(x) = sin(x[1] + x[2]) + cos(x[1])^2 | ||
g(x) = [cos(x[1] + x[2]) - 2*cos(x[1])*sin(x[1]); cos(x[1] + x[2])] | ||
|
||
f(x1,x2) = f([x1;x2]) | ||
|
||
f([0; 0]) | ||
f(0, 0) | ||
|
||
#### Exercise | ||
|
||
using Plots | ||
|
||
xs = range(-3, 1, length = 40) | ||
ys = range(-2, 1, length = 40) | ||
|
||
contourf(xs, ys, f, color = :jet) | ||
|
||
#### Exercise | ||
|
||
finite_difference(f, x::Real; h=1e-8) = (f(x+h) - f(x)) / h | ||
|
||
#### Exercise | ||
|
||
x = [-2; -1] | ||
fin_diff(h) = finite_difference(y -> f(x[1], y), x[2]; h=h) | ||
|
||
true_grad = g(x)[2] | ||
|
||
hs = 10. .^ (-15:0.01:-1) | ||
|
||
plot(hs, fin_diff, | ||
xlabel = "h", | ||
ylabel = "Partial gradient wrt y", | ||
label = ["Approximation" "True gradient"], | ||
xscale = :log10, | ||
) | ||
|
||
hline!([true_grad]; label = "True gradient") | ||
|
||
#### Numerical errors | ||
|
||
x = 1 | ||
h = 1e-13 | ||
|
||
(x+h)^2 - x^2 | ||
2*x*h + h^2 | ||
|
||
#### Exercise | ||
|
||
x = [-2; -1] | ||
α = 0.25 | ||
x_grad = [x x.+α.*g(x)] | ||
|
||
contourf(xs, ys, f; color = :jet) | ||
plot!(x_grad[1, :], x_grad[2, :]; | ||
line = (:arrow, 4, :black), | ||
label = "", | ||
) | ||
|
||
#### Exercise | ||
|
||
function optim(f, g, x, α; max_iter=100) | ||
xs = zeros(length(x), max_iter+1) | ||
xs[:,1] = x | ||
for i in 1:max_iter | ||
x -= α*g(x) | ||
xs[:,i+1] = x | ||
end | ||
return xs | ||
end | ||
|
||
#### Animation | ||
|
||
using Random | ||
|
||
function create_anim( | ||
f, | ||
path, | ||
xlims, | ||
ylims, | ||
file_name = joinpath(pwd(), randstring(12) * ".gif"); | ||
xbounds = xlims, | ||
ybounds = ylims, | ||
fps = 15, | ||
) | ||
xs = range(xlims...; length = 100) | ||
ys = range(ylims...; length = 100) | ||
plt = contourf(xs, ys, f; color = :jet) | ||
|
||
# add constraints if provided | ||
if !(xbounds == xlims && ybounds == ylims) | ||
x_rect = [xbounds[1]; xbounds[2]; xbounds[2]; xbounds[1]; xbounds[1]] | ||
y_rect = [ybounds[1]; ybounds[1]; ybounds[2]; ybounds[2]; ybounds[1]] | ||
|
||
plot!(x_rect, y_rect; line = (2, :dash, :red), label="") | ||
end | ||
|
||
# add an empty plot | ||
plot!(Float64[], Float64[]; line = (4, :arrow, :black), label = "") | ||
|
||
# extract the last plot series | ||
plt_path = plt.series_list[end] | ||
|
||
# create the animation and save it | ||
anim = Animation() | ||
for x in eachcol(path) | ||
push!(plt_path, x[1], x[2]) # add a new point | ||
frame(anim) | ||
end | ||
gif(anim, file_name; fps = fps, show_msg = false) | ||
return nothing | ||
end | ||
|
||
#### Exercise | ||
|
||
x_gd = optim([], g, [0; -1], 0.1) | ||
|
||
xlims = (-3, 1) | ||
ylims = (-2, 1) | ||
create_anim(f, x_gd, xlims, ylims, "anim1.gif") | ||
|
||
f_gd = [f(x) for x in eachcol(x_gd)] | ||
|
||
plot(f_gd, label="", xlabel="Iteration", ylabel="Function value") | ||
|
||
#### Different stepsizes | ||
|
||
x_gd = optim([], g, [0; -1], 0.01) | ||
|
||
create_anim(f, x_gd, xlims, ylims, "anim2.gif") | ||
|
||
x_gd = optim([], g, [0; -1], 1) | ||
|
||
create_anim(f, x_gd, xlims, ylims, "anim3.gif") | ||
|
||
#### Stepsize selection | ||
|
||
abstract type Step end | ||
|
||
struct GD <: Step | ||
α::Float64 | ||
end | ||
|
||
#### Gradient descent | ||
|
||
optim_step(s::GD, f, g, x) = -s.α*g(x) | ||
|
||
function optim(f, g, x, s::Step; max_iter=100) | ||
xs = zeros(length(x), max_iter+1) | ||
xs[:,1] = x | ||
for i in 1:max_iter | ||
x += optim_step(s, f, g, x) | ||
xs[:,i+1] = x | ||
end | ||
return xs | ||
end | ||
|
||
gd = GD(0.1) | ||
x_opt = optim(f, g, [0;-1], gd) | ||
|
||
create_anim(f, x_opt, xlims, ylims, "anim4.gif") | ||
|
||
#### Exercise | ||
|
||
struct Armijo <: Step | ||
c::Float64 | ||
α_max::Float64 | ||
end | ||
|
||
function optim_step(s::Armijo, f, g, x) | ||
fun = f(x) | ||
grad = g(x) | ||
α = s.α_max | ||
while f(x .- α*grad) > fun - s.c*α*(grad'*grad) | ||
α /= 2 | ||
if α <= 1e-6 | ||
warning("Armijo line search failed.") | ||
break | ||
end | ||
end | ||
return -α*grad | ||
end | ||
|
||
gd = Armijo(1e-4, 1) | ||
x_opt = optim(f, g, [0;-1], gd) | ||
|
||
create_anim(f, x_opt, xlims, ylims, "anim5.gif") | ||
|
||
########################################### | ||
# Constrained optimization | ||
########################################### | ||
|
||
f(x) = sin(x[1] + x[2]) + cos(x[1])^2 | ||
g(x) = [cos(x[1] + x[2]) - 2*cos(x[1])*sin(x[1]); cos(x[1] + x[2])] | ||
|
||
f(x1,x2) = f([x1;x2]) | ||
|
||
#### Projected gradients | ||
|
||
function optim(f, g, P, x, α; max_iter=100) | ||
xs = zeros(length(x), max_iter+1) | ||
ys = zeros(length(x), max_iter) | ||
xs[:,1] = x | ||
for i in 1:max_iter | ||
ys[:,i] = xs[:,i] - α*g(xs[:,i]) | ||
xs[:,i+1] = P(ys[:,i]) | ||
end | ||
return xs, ys | ||
end | ||
|
||
P(x, x_min, x_max) = min.(max.(x, x_min), x_max) | ||
|
||
x_min = [-1; -1] | ||
x_max = [0; 0] | ||
|
||
xs, ys = optim(f, g, x -> P(x,x_min,x_max), [0;-1], 0.1) | ||
|
||
#### Plot 1 | ||
|
||
xlims = (-3, 1) | ||
ylims = (-2, 1) | ||
|
||
create_anim(f, xs, xlims, ylims, "anim6.gif"; | ||
xbounds=(x_min[1], x_max[1]), | ||
ybounds=(x_min[2], x_max[2]), | ||
) | ||
|
||
#### Plot 2 | ||
|
||
xys = hcat(reshape([xs[:,1:end-1]; ys][:], 2, :), xs[:,end]) | ||
|
||
create_anim(f, xys, xlims, ylims, "anim7.gif"; | ||
xbounds=(x_min[1], x_max[1]), | ||
ybounds=(x_min[2], x_max[2]), | ||
) | ||
|
||
|