Skip to content
/ pipe-it Public

A simple pipeline library, which can composite function easily.

License

Notifications You must be signed in to change notification settings

Jw-23/pipe-it

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pipe-it

Rust crate badge

中文文档

Pipe-it is a lightweight, type-safe library for building linear and concurrent processing pipelines in Rust. It draws inspiration from the API style of the Bevy framework, using Res and ResMut to access shared resources, but with a simpler implementation.

Key Features

  • Linear Composition: Chain async functions seamlessly to build processing workflows.
  • Dependency Injection: Access shared resources (Res, ResMut) or inputs (Input) directly in your function signatures.
  • Type Safety: Compile-time checks ensure pipeline stages connect correctly.
  • State Management: Built-in Shared container for managing global or scoped application state.

Getting Started

Cargo dependency

pipe-it = "0.2"

1. Basic Linear Pipeline

You can chain handlers (functions) together using .pipe() and .connect().

use pipe_it::{Context, Input, ext::HandlerExt};

// Step 1: Takes an integer, returns an integer
async fn double(num: Input<i32>) -> i32 {
    *num * 2
}

// Step 2: Takes an integer, returns a string
async fn to_string(num: Input<i32>) -> String {
    format!("Value is: {}", *num)
}

#[tokio::main]
async fn main() {
    // Define the pipeline: double -> to_string
    // The output of 'double' (i32) becomes the input context for 'to_string'
    let pipeline = double.pipe().connect(to_string);

    // execute
    let ctx = Context::empty(10); // Initial input: 10
    let result = pipeline.apply(ctx).await;

    println!("{}", result); // Output: "Value is: 20"
}

Map Context:use invoke to context pass to pipline and generate new context.

use crate::{Context, Input, Res, ResMut, Shared};
    #[derive(Debug, Clone)]
    struct Counter {
        c: i32,
    }
    #[tokio::test]
    // test context invoke api
    async fn test_chain_invoke() {
        let ctx = Context::new(3, Shared::new().insert(Counter { c: 1 }));
        ctx.invoke(async |x: Input<i32>, mut counter: ResMut<Counter>| {
            counter.c += 1;
            *x + 1
        })
        .await
        .invoke(async |x: Input<i32>, counter: Res<Counter>| *x + counter.c)
        .await
        .invoke(async |x:Input<i32>|assert_eq!(*x,6))
        .await;
    }

2. Using Shared Resources & Mutation

You can inject shared state into any handler using Res (read-only) and ResMut (mutable).

use pipe_it::{Context, Shared, Input, ResMut, ext::HandlerExt};

#[derive(Default)]
struct AccessLog {
    count: usize,
}

// This handler updates the shared log AND processes the input
async fn log_and_square(input: Input<i32>, mut log: ResMut<AccessLog>) -> i32 {
    log.count += 1;
    println!("Log count: {}", log.count);
    *input * *input
}

#[tokio::main]
async fn main() {
    // 1. Setup shared state
    let shared = Shared::new()
        .insert(AccessLog::default());

    // 2. Create context with input and shared state
    let ctx = Context::new(5, shared);

    // 3. Run the pipeline
    let result = log_and_square.pipe().apply(ctx).await;

    assert_eq!(result, 25);
}

3. Combinators

Pipe-it provides powerful combinators to handle control flow and concurrency.

Map (Collection Processing)

Process Vec<I> inputs by applying a pipeline to each element. Supports concurrency options.

use pipe_it::{Context, concurrency::map, ext::HandlerExt};

// Define an item processor
async fn process_item(n: Input<i32>) -> String { n.to_string() }

#[tokio::main]
async fn main() {
    let inputs = vec![1, 2, 3];
    
    // Create a map pipeline (concurrent by default)
    let pipe = map(process_item.pipe()); 
    // Or explicit: map(process_item.pipe()).sequential()

    let result = pipe.apply(Context::empty(inputs)).await;
    assert_eq!(result, vec!["1", "2", "3"]);
}

Alt (Branching & Fallback)

Use alt((A, B, ...)) to compose multiple pipelines that return PResult. The framework attempts execution sequentially until one succeeds (returns Ok).

use pipe_it::{Context, Input, PResult, PipelineError, alt, ext::HandlerExt};

async fn parse_int(s: Input<String>) -> PResult<i32> {
    s.parse().map_err(|_| PipelineError::Failure { msg: "Not an int".into(), expected: "int".into() })
}

async fn default_zero(_: Input<String>) -> PResult<i32> { Ok(0) }

#[tokio::main]
async fn main() {
    // Try parse_int first, if it fails, run default_zero
    let pipeline = alt((parse_int.pipe(), default_zero.pipe()));

    let ctx = Context::empty("not number".to_string());
    assert_eq!(pipeline.apply(ctx).await.unwrap(), 0);
}

Sink (Aggregation)

Use sink((A, B, ...)) to run multiple handlers on the same input and collect their results into a tuple. Supports .concurrent().

use pipe_it::{Context, Input, sink::sink, ext::HandlerExt};

async fn task1(input: Input<i32>) -> i32 { *input + 1 }
async fn task2(input: Input<i32>) -> String { format!("val: {}", *input) }

#[tokio::main]
async fn main() {
    // Run task1 and task2 concurrently
    let pipeline = sink((task1, task2)).concurrent();

    let result = pipeline.call(Context::empty(10)).await;
    assert_eq!(result, (11, "val: 10".to_string()));
}

Cond (Conditional)

Use cond(predicate, pipeline) to execute a pipeline only if the value satisfies a condition.

use pipe_it::{Context, Input, cond, ext::HandlerExt};

async fn is_positive(n: Input<i32>) -> bool { *n > 0 }
async fn double(n: Input<i32>) -> i32 { *n * 2 }

#[tokio::main]
async fn main() {
    let pipe = cond(is_positive, double);

    let res = pipe.apply(Context::empty(10)).await;
    assert_eq!(res.unwrap(), 20);

    let res_fail = pipe.apply(Context::empty(-5)).await;
    assert!(res_fail.is_err());
}

4. Using Tags for Composition

You can decouple handler definition from usage by assigning string tags to functions using the #[node] macro, and referencing them with the tag!() macro.

use pipe_it::{Context, Input, ext::HandlerExt, node, tag};

// 1. Define a handler with a unique tag
#[node("greet")]
async fn greet(name: Input<String>) -> String {
    format!("Hello, {}!", *name)
}

#[tokio::main]
async fn main() {
    // 2. Create a pipeline using the tag instead of the function name
    let pipeline = tag!("greet").pipe();

    let ctx = Context::empty("World".to_string());
    let result = pipeline.apply(ctx).await;

    println!("{}", result); // Output: "Hello, World!"
}

5. Reusable Pipelines (Middle Pipeline)

You can define functions that return a constructed Pipeline. This is useful for encapsulating complex logic or creating reusable middleware.

use pipe_it::{Context, Input, Pipeline, ext::HandlerExt};

async fn step_a(n: Input<i32>) -> i32 { *n + 1 }
async fn step_b(n: Input<i32>) -> String { n.to_string() }

// Encapsulate a chain of handlers into a single function
fn common_logic() -> impl Pipeline<i32, String> {
    step_a.pipe().connect(step_b)
}

#[tokio::main]
async fn main() {
    let pipe = common_logic();
    let result = pipe.apply(Context::empty(10)).await;
    println!("{}", result); // "11"
}

6. Integrations (Tower & Cache)

Pipe-it provides optional features to integrate with the ecosystem.

Tower Integration

Enable the tower feature in Cargo.toml. You can convert any Pipeline into a tower::Service.

use pipe_it::service::PipeService;

// Convert pipeline to a Tower Service
let service = PipeService::new(my_pipeline);

// You can also inject shared resources to be reused across requests
let service = PipeService::with_shared(my_pipeline, shared_resources);

Caching Results

Enable the cache feature (enabled by default). Use .cache(capacity) to cache the results of pure pipelines based on input hash.

// Cache the result of heavy_computation for the last 100 inputs
let cached_pipe = heavy_computation.pipe().cache(100);

Best Practices

Safety Reminder

Using try_unwrap can be dangerous in certain environments, such as tuple branches. Because each branch needs to attempt to access the data, if one branch takes ownership (occupies the data), subsequent branches will fail to access it.

Performance Benchmarks

We compared the performance of a 5-step pipeline processing a Vec<i32> of 10,000 items.

Implementation Time (per iter) Overhead vs Raw Note
Raw Rust (Move) 1.02 µs - Baseline (Zero Copy)
Pipe-it (try_unwrap) 1.09 µs +7% Recommended
Pipe-it (Clone) 5.22 µs +411% Default usage

Conclusion: By using try_unwrap() to acquire ownership, the framework overhead is negligible (~0.07 µs), achieving near-native performance (5x faster than cloning).

Recommendation: Acquire ownership via try_unwrap in safe (linear) workflows to avoid cloning costs.

API Overview

Core Concepts

  • Handler: Any async function that takes arguments implementing FromContext.
  • Context<I>: Holds the current input I and Shared resources.
  • Input<I>: A wrapper to extract the current input from the context.
  • Res<T> / ResMut<T>: Wrappers to extract shared resources from the context.

Builders & Combinators

  • sink((...)): Aggregates multiple handlers. Use .concurrent() for parallel execution.
  • alt((...)): Tries multiple handlers in sequence until one succeeds.
  • map(pipeline): Maps a pipeline over a collection. Use .concurrent() or .sequential().
  • cond(pred, next): Conditional execution.

Extension Methods (HandlerExt)

  • .pipe(): Converts a handler into a Pipeline.
  • .connect(next_handler): Chains two pipelines linearly.

About

A simple pipeline library, which can composite function easily.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages