- A Graphical user interface which takes Hepatitis Disease dataset as input.
- Splitting the data in multiple chunks, analyse and visualize each data chunk as a pattern.
- Identification of the changes in data patterns and invoke some pop-up msg at the time when there is a change.
- Building a Correlation matrix from the attributes of the given data.
- Computation of Metrics while processing each data attribute
- Prediction of Person surviving or dying acoording to the user input values of different attributes
- Visualisation of each attribute according to their density curve
- Exploratory DataAnalysis of each attribute on the Dataset
The Dataset have the following attribute information
Attribute information:
1. Class: DIE, LIVE
2. AGE: 10, 20, 30, 40, 50, 60, 70, 80
3. SEX: male, female
4. STEROID: no, yes
5. ANTIVIRALS: no, yes
6. FATIGUE: no, yes
7. MALAISE: no, yes
8. ANOREXIA: no, yes
9. LIVER BIG: no, yes
10. LIVER FIRM: no, yes
11. SPLEEN PALPABLE: no, yes
12. SPIDERS: no, yes
13. ASCITES: no, yes
14. VARICES: no, yes
15. BILIRUBIN: 0.39, 0.80, 1.20, 2.00, 3.00, 4.00
16. ALK PHOSPHATE: 33, 80, 120, 160, 200, 250
17. SGOT: 13, 100, 200, 300, 400, 500,
18. ALBUMIN: 2.1, 3.0, 3.8, 4.5, 5.0, 6.0
19. PROTIME: 10, 20, 30, 40, 50, 60, 70, 80, 90
20. HISTOLOGY: no, yes
DFD DIAGRAM |
ACTIVITY DIAGRAM |
- Python 3.8 Version
- Embedded HTML
- Embedded CSS
Install the modules in Requirements.txt
streamlit==0.79.0
pandas==1.2.3
matplotlib==3.4.1
numpy==1.20.2
pandas_profiling==2.11.0
plotly==4.14.3
seaborn==0.11.1
streamlit-pandas-profiling==0.1.1
sweetviz==2.1.0
altair==4.1.0
joblib==1.0.1
lime==0.2.0.1
- fork the repo
- git clone [REPO-URL]
- Setup the project in IDE with installed requirements
- Run
streamlit run app.py
Medha - IIT2019021 |
Vidushi - IIT2019027 |
Aarushi - IIT2019032 |
Jyotika - IIT2019036 |