- Phase Classification
- Metallicity Classification
- Chemical Family Classification
- Reactivity Classification
- Electrical Type Classification
- Hardness Classification
- Radioactivity Classification
- Space Group Classification
- Graph Properties Classification
- Lifetime Classification
- Linear Regression
- Multiple Linear Regression
- Polynomial Regression
- Ridge Regression
- Lasso Regression
- ElasticNet Regression
- Decision Tree Regression
- Random Forest Regression
- Gradient Boosting Regression
- Support Vector Regression
- K-Nearest Neighbors (KNN) Regression
- Bayesian Regression
- Neural Network Regression
- Quantile Regression
- Robust Regression
- Nonlinear Regression
- Generalized Additive Model
- Generalized Linear Model
- Tobit Regression
- Poisson Regression
- Negative Binomial Regression
- Zero-Inflated Regression
- Multilevel (or Hierarchial Regression)
- Bayesian Additive Regression Trees
- Gaussian Process Regression
- Functional Regression
- Instrumental Variables Regression
- Heteroscedasticity Regression
- Multivariate Regression
- K-Means Clustering
- Hierarchical Clustering
- Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
- Mean Shift Clustering
- Gaussian Mixture Models (GMM)
- Spectral Clustering
- Affinity Propagation
- Fuzzy Clustering (Fuzzy C-Means)
- Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)
- Self-Organizing Maps (SOM)
- Agglomerative Clustering
- Divisive Clustering
- Leader Clustering
- Clustering In Quest (CLIQUE)
- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Independent Component Analysis (ICA)
- Factor Analysis
- t-Distributed Stochastic Neighbor Embedding (t-SNE)
- Isomap
- Local Linear Embedding
- Hessian Eigenmaps
- Spectral Embedding
- Uniform Manifold Approximation and Projection (UMAP)
- Multidimensional Scaling (MDS)
- Sammon Mapping
- Deep Belief Network
- Restricted Boltzmann Machine
- Curvilinear Component Analysis
- Random Projection
- Quadratic Discriminant Analysis
- Deep Autoencoding Gaussian Mixture Model (DAGMM)
- Linear Autoencoder
- Nonlinear Autoencoder
- Deep Variational Information Bottleneck (DVIB)
- Principal Curves
- Self-Organizing Feature Maps (SOFM)
- Domain Adaptation
- Model Stacking
- Ensemble Learning
- Multi-task Learning
- Meta Learning
- Deep Belief Network (DBN)
- Transformer Network
- Capsule Network
- Temporal Convolutional Network (TCN)
- Deep Q-Network (DQN)
- Support Vector Machine (SVM)
- K-Nearest Neighbors (KNN)
- Gaussian Naive Bayes
- Multinomial Naive Bayes
- Bernoulli Naive Bayes
- Complement Naive Bayes
- Categorical Naive Bayes
- Hybrid Naive Bayes
- Averaged One-Dependence Estimator (AODE)
- Semi-Naive Bayes
- Weighted Naive Bayes
This repository has been archived by the owner on Apr 14, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
KMORaza/Periodic_Table_Analysis
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
Analysis of Modern Periodic Table using some Machine Learning techniques
Topics
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published