Skip to content
This repository has been archived by the owner on Apr 14, 2024. It is now read-only.

Analysis of Modern Periodic Table using some Machine Learning techniques

Notifications You must be signed in to change notification settings

KMORaza/Periodic_Table_Analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 

Repository files navigation

Analysis of Modern Periodic Table using some Machine Learning techniques

  • Phase Classification
  • Metallicity Classification
  • Chemical Family Classification
  • Reactivity Classification
  • Electrical Type Classification
  • Hardness Classification
  • Radioactivity Classification
  • Space Group Classification
  • Graph Properties Classification
  • Lifetime Classification
  • Linear Regression
  • Multiple Linear Regression
  • Polynomial Regression
  • Ridge Regression
  • Lasso Regression
  • ElasticNet Regression
  • Decision Tree Regression
  • Random Forest Regression
  • Gradient Boosting Regression
  • Support Vector Regression
  • K-Nearest Neighbors (KNN) Regression
  • Bayesian Regression
  • Neural Network Regression
  • Quantile Regression
  • Robust Regression
  • Nonlinear Regression
  • Generalized Additive Model
  • Generalized Linear Model
  • Tobit Regression
  • Poisson Regression
  • Negative Binomial Regression
  • Zero-Inflated Regression
  • Multilevel (or Hierarchial Regression)
  • Bayesian Additive Regression Trees
  • Gaussian Process Regression
  • Functional Regression
  • Instrumental Variables Regression
  • Heteroscedasticity Regression
  • Multivariate Regression
  • K-Means Clustering
  • Hierarchical Clustering
  • Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
  • Mean Shift Clustering
  • Gaussian Mixture Models (GMM)
  • Spectral Clustering
  • Affinity Propagation
  • Fuzzy Clustering (Fuzzy C-Means)
  • Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)
  • Self-Organizing Maps (SOM)
  • Agglomerative Clustering
  • Divisive Clustering
  • Leader Clustering
  • Clustering In Quest (CLIQUE)
  • Principal Component Analysis (PCA)
  • Linear Discriminant Analysis (LDA)
  • Independent Component Analysis (ICA)
  • Factor Analysis
  • t-Distributed Stochastic Neighbor Embedding (t-SNE)
  • Isomap
  • Local Linear Embedding
  • Hessian Eigenmaps
  • Spectral Embedding
  • Uniform Manifold Approximation and Projection (UMAP)
  • Multidimensional Scaling (MDS)
  • Sammon Mapping
  • Deep Belief Network
  • Restricted Boltzmann Machine
  • Curvilinear Component Analysis
  • Random Projection
  • Quadratic Discriminant Analysis
  • Deep Autoencoding Gaussian Mixture Model (DAGMM)
  • Linear Autoencoder
  • Nonlinear Autoencoder
  • Deep Variational Information Bottleneck (DVIB)
  • Principal Curves
  • Self-Organizing Feature Maps (SOFM)
  • Domain Adaptation
  • Model Stacking
  • Ensemble Learning
  • Multi-task Learning
  • Meta Learning
  • Deep Belief Network (DBN)
  • Transformer Network
  • Capsule Network
  • Temporal Convolutional Network (TCN)
  • Deep Q-Network (DQN)
  • Support Vector Machine (SVM)
  • K-Nearest Neighbors (KNN)
  • Gaussian Naive Bayes
  • Multinomial Naive Bayes
  • Bernoulli Naive Bayes
  • Complement Naive Bayes
  • Categorical Naive Bayes
  • Hybrid Naive Bayes
  • Averaged One-Dependence Estimator (AODE)
  • Semi-Naive Bayes
  • Weighted Naive Bayes

About

Analysis of Modern Periodic Table using some Machine Learning techniques

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published