-
Notifications
You must be signed in to change notification settings - Fork 1
/
intersect.py
76 lines (58 loc) · 1.94 KB
/
intersect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# A Python3 program to find if 2 given line segments intersect or not
# This code is publicly contributed by Ansh Riyal
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
# Given three collinear points p, q, r, the function checks if
# point q lies on line segment 'pr'
def onSegment(p, q, r):
if ( (q.x <= max(p.x, r.x)) and (q.x >= min(p.x, r.x)) and
(q.y <= max(p.y, r.y)) and (q.y >= min(p.y, r.y))):
return True
return False
def orientation(p, q, r):
# to find the orientation of an ordered triplet (p,q,r)
# function returns the following values:
# 0 : Collinear points
# 1 : Clockwise points
# 2 : Counterclockwise
# See https://www.geeksforgeeks.org/orientation-3-ordered-points/amp/
# for details of below formula.
val = (float(q.y - p.y) * (r.x - q.x)) - (float(q.x - p.x) * (r.y - q.y))
if (val > 0):
# Clockwise orientation
return 1
elif (val < 0):
# Counterclockwise orientation
return 2
else:
# Collinear orientation
return 0
# The main function that returns true if
# the line segment 'p1q1' and 'p2q2' intersect.
def intersect(p1,q1,p2,q2):
# Find the 4 orientations required for
# the general and special cases
o1 = orientation(p1, q1, p2)
o2 = orientation(p1, q1, q2)
o3 = orientation(p2, q2, p1)
o4 = orientation(p2, q2, q1)
# General case
if ((o1 != o2) and (o3 != o4)):
return True
# Special Cases
# p1 , q1 and p2 are collinear and p2 lies on segment p1q1
if ((o1 == 0) and onSegment(p1, p2, q1)):
return True
# p1 , q1 and q2 are collinear and q2 lies on segment p1q1
if ((o2 == 0) and onSegment(p1, q2, q1)):
return True
# p2 , q2 and p1 are collinear and p1 lies on segment p2q2
if ((o3 == 0) and onSegment(p2, p1, q2)):
return True
# p2 , q2 and q1 are collinear and q1 lies on segment p2q2
if ((o4 == 0) and onSegment(p2, q1, q2)):
return True
# If none of the cases
return False