Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Output predicted data too #19

Merged
merged 2 commits into from
Feb 26, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
88 changes: 84 additions & 4 deletions main.py
Original file line number Diff line number Diff line change
Expand Up @@ -237,7 +237,7 @@ def find_best_graph(data, iterations, num_clusters, max_epochs, early_stopping,
best_performances.append(best_performance)
best_model.save_weights(f'{results_dir}/graph_{cluster_type}_weights/cluster_{c}')

prediction = make_prediction(data, best_model)
prediction, actual_prediction = make_prediction(data, best_model)
# reverse transform and overwrite.
# Better to implement it in data_handler,
# but this does the job
Expand Down Expand Up @@ -277,7 +277,44 @@ def find_best_graph(data, iterations, num_clusters, max_epochs, early_stopping,
max = data.transform_max[data.clusters_idec == c_id],
transform = data.transform_type
)


if cluster_type == "abund":
actual_prediction = rev_transform(
DF = actual_prediction,
mean = data.transform_mean[data.clusters_abund == c_id],
std = data.transform_std[data.clusters_abund == c_id],
min = data.transform_min[data.clusters_abund == c_id],
max = data.transform_max[data.clusters_abund == c_id],
transform = data.transform_type
)
elif cluster_type == "graph":
actual_prediction = rev_transform(
DF=actual_prediction,
mean=data.transform_mean[data.clusters_graph == c_id],
std=data.transform_std[data.clusters_graph == c_id],
min=data.transform_min[data.clusters_graph == c_id],
max=data.transform_max[data.clusters_graph == c_id],
transform=data.transform_type
)
elif cluster_type == "func":
actual_prediction = rev_transform(
DF = actual_prediction,
mean = data.transform_mean[data.clusters_func == c_id],
std = data.transform_std[data.clusters_func == c_id],
min = data.transform_min[data.clusters_func == c_id],
max = data.transform_max[data.clusters_func == c_id],
transform = data.transform_type
)
elif cluster_type == "idec":
actual_prediction = rev_transform(
DF = actual_prediction,
mean = data.transform_mean[data.clusters_idec == c_id],
std = data.transform_std[data.clusters_idec == c_id],
min = data.transform_min[data.clusters_idec == c_id],
max = data.transform_max[data.clusters_idec == c_id],
transform = data.transform_type
)

dates = data.get_metadata(data.all, 'Date').dt.date
dates_test = data.get_metadata(data.test, 'Date').dt.date
# Date of the first sample in the test set and
Expand All @@ -298,6 +335,7 @@ def find_best_graph(data, iterations, num_clusters, max_epochs, early_stopping,
if not path.exists(data_predicted_dir):
mkdir(data_predicted_dir)
prediction.to_csv(f'{data_predicted_dir}/graph_{cluster_type}_cluster_{c}_predicted.csv')
actual_prediction.to_csv(f'{data_predicted_dir}/graph_{cluster_type}_cluster_{c}_actual_prediction.csv')
data.all.to_csv(f'{data_predicted_dir}/graph_{cluster_type}_cluster_{c}_dataall.csv')
data.all_nontrans.to_csv(f'{data_predicted_dir}/graph_{cluster_type}_cluster_{c}_dataall_nontrans.csv')

Expand Down Expand Up @@ -380,12 +418,16 @@ def find_best_idec(data, iterations, num_clusters, tolerance):


def make_prediction(data, lstm_model):
actual_prediction = data.all[-data.window_width:].to_numpy().reshape([1, data.window_width, -1])
actual_prediction = lstm_model.predict(actual_prediction)
actual_prediction = actual_prediction.reshape([data.window_width, -1])

prediction = lstm_model.predict(data.all_batched)
prediction = prediction[:, 0]
index_pred = data.all.index[data.window_width:]

#needs to be reverse transformed for real values
return pd.DataFrame(data = prediction, index = index_pred, columns = data.all.columns)
return pd.DataFrame(data = prediction, index = index_pred, columns = data.all.columns), pd.DataFrame(data = actual_prediction, columns = data.all.columns)

def create_lstm_model(num_features, predict_timestamp=1):
"""Create a model without tuning hyperparameters.
Expand Down Expand Up @@ -449,7 +491,7 @@ def find_best_lstm(data, iterations, num_clusters, max_epochs, early_stopping, c
best_performances.append(best_performance)
best_model.save_weights(f'{results_dir}/lstm_{cluster_type}_weights/cluster_{c}')

prediction = make_prediction(data, best_model)
prediction, actual_prediction = make_prediction(data, best_model)
# reverse transform and overwrite.
# Better to implement it in data_handler,
# but this does the job
Expand Down Expand Up @@ -481,6 +523,43 @@ def find_best_lstm(data, iterations, num_clusters, max_epochs, early_stopping, c
transform = data.transform_type
)

if cluster_type == "abund":
actual_prediction = rev_transform(
DF = actual_prediction,
mean = data.transform_mean[data.clusters_abund == c_id],
std = data.transform_std[data.clusters_abund == c_id],
min = data.transform_min[data.clusters_abund == c_id],
max = data.transform_max[data.clusters_abund == c_id],
transform = data.transform_type
)
elif cluster_type == "graph":
actual_prediction = rev_transform(
DF=actual_prediction,
mean=data.transform_mean[data.clusters_graph == c_id],
std=data.transform_std[data.clusters_graph == c_id],
min=data.transform_min[data.clusters_graph == c_id],
max=data.transform_max[data.clusters_graph == c_id],
transform=data.transform_type
)
elif cluster_type == "func":
actual_prediction = rev_transform(
DF = actual_prediction,
mean = data.transform_mean[data.clusters_func == c_id],
std = data.transform_std[data.clusters_func == c_id],
min = data.transform_min[data.clusters_func == c_id],
max = data.transform_max[data.clusters_func == c_id],
transform = data.transform_type
)
elif cluster_type == "idec":
actual_prediction = rev_transform(
DF = actual_prediction,
mean = data.transform_mean[data.clusters_idec == c_id],
std = data.transform_std[data.clusters_idec == c_id],
min = data.transform_min[data.clusters_idec == c_id],
max = data.transform_max[data.clusters_idec == c_id],
transform = data.transform_type
)

dates = data.get_metadata(data.all, 'Date').dt.date
dates_test = data.get_metadata(data.test, 'Date').dt.date
# Date of the first sample in the test set and
Expand All @@ -501,6 +580,7 @@ def find_best_lstm(data, iterations, num_clusters, max_epochs, early_stopping, c
if not path.exists(data_predicted_dir):
mkdir(data_predicted_dir)
prediction.to_csv(f'{data_predicted_dir}/lstm_{cluster_type}_cluster_{c}_predicted.csv')
actual_prediction.to_csv(f'{data_predicted_dir}/graph_{cluster_type}_cluster_{c}_actual_prediction.csv')
data.all.to_csv(f'{data_predicted_dir}/lstm_{cluster_type}_cluster_{c}_dataall.csv')
data.all_nontrans.to_csv(f'{data_predicted_dir}/lstm_{cluster_type}_cluster_{c}_dataall_nontrans.csv')

Expand Down
Loading