Implementations of Voice Conversion models.
Method | Paper | Official Code | State |
---|---|---|---|
AdaIN-VC | Chou et al. | GitHub | |
AGAIN-VC | Chen et al. | GitHub | done |
AutoVC | Qian et al. | GitHub | |
VQVC+ | Wu et al. | GitHub |
- Create a csv file for preprocessing. See
data/example_csv/vctk.csv
python gencsv.py vctk -i ~/VCTK-Corpus/ -o data/example_csv/vctk.csv
- Preprocess using a csv file. See
data/example_csv/vctk.csv
python preprocess.py mel-trim -i data/example_csv/vctk.csv -o data/feature/vctk
- The output directory structure
data/feature/vctk
└── mel-trim
├── p225_p225_001.npy
├── p225_p225_002.npy
├── p225_p225_003.npy
...
Edit the config file and then run the script
python train.py --config config/AGAIN-VC.yaml
python inference.py --config config/AGAIN-VC.yaml -s <source_wav> -t <target_wav> -o <output_wav_or_dir>