Skip to content

Commit

Permalink
Merge pull request #39 from LCOGT/feature/rgb_image_scaling
Browse files Browse the repository at this point in the history
Update server to have raw-data analysis operation and update rgb oper…
  • Loading branch information
jnation3406 authored Nov 5, 2024
2 parents a9f5658 + 4f7acd5 commit 9dd1397
Showing 10 changed files with 148 additions and 150 deletions.
Empty file.
33 changes: 33 additions & 0 deletions datalab/datalab_session/analysis/raw_data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
import numpy as np
from PIL import Image
from datalab.datalab_session.s3_utils import get_fits
from datalab.datalab_session.file_utils import get_hdu
from fits2image.scaling import extract_samples, calc_zscale_min_max

# TODO: This analysis endpoint assumes the image to be of 16 bitdepth. We should make this agnositc to bit depth in the future

def raw_data(input: dict):
fits_path = get_fits(input['basename'], input.get('source', 'archive'))

sci_hdu = get_hdu(fits_path, 'SCI')
image_data = sci_hdu.data

# Compute the fits2image autoscale params to send with the image
samples = extract_samples(image_data, sci_hdu.header, 2000)
median = np.median(samples)
_, zmax, _ = calc_zscale_min_max(samples, contrast=0.1, iterations=1)

# resize the image to max. 500 pixels on an axis by default for the UI
max_size = input.get('max_size', 500)
image = Image.fromarray(image_data)
newImage = image.resize((max_size, max_size), Image.LANCZOS)
scaled_array = np.asarray(newImage).astype(np.float16)
scaled_array_flipped = np.flip(scaled_array, axis=0)

return {'data': scaled_array_flipped.flatten().tolist(),
'height': scaled_array.shape[0],
'width': scaled_array.shape[1],
'zmin': int(median),
'zmax': int(zmax),
'bitdepth': 16
}
14 changes: 12 additions & 2 deletions datalab/datalab_session/data_operations/rgb_stack.py
Original file line number Diff line number Diff line change
@@ -36,6 +36,8 @@ def wizard_description():
'type': 'file',
'minimum': 1,
'maximum': 1,
'include_custom_scale': True,
'combine_custom_scale': 'rgb',
'filter': ['rp', 'r']
},
'green_input': {
@@ -44,6 +46,8 @@ def wizard_description():
'type': 'file',
'minimum': 1,
'maximum': 1,
'include_custom_scale': True,
'combine_custom_scale': 'rgb',
'filter': ['V', 'gp']
},
'blue_input': {
@@ -52,9 +56,11 @@ def wizard_description():
'type': 'file',
'minimum': 1,
'maximum': 1,
'include_custom_scale': True,
'combine_custom_scale': 'rgb',
'filter': ['B']
}
}
},
}

def operate(self):
@@ -64,12 +70,16 @@ def operate(self):
log.info(rgb_comment)

input_fits_list = []
zmin_list = []
zmax_list = []
for index, input in enumerate(rgb_input_list, start=1):
input_fits_list.append(InputDataHandler(input['basename'], input['source']))
zmin_list.append(input['zmin'])
zmax_list.append(input['zmax'])
self.set_operation_progress(0.4 * (index / len(rgb_input_list)))

fits_file_list = [image.fits_file for image in input_fits_list]
large_jpg_path, small_jpg_path = create_jpgs(self.cache_key, fits_file_list, color=True)
large_jpg_path, small_jpg_path = create_jpgs(self.cache_key, fits_file_list, color=True, zmin=zmin_list, zmax=zmax_list)
self.set_operation_progress(0.6)

# color photos take three files, so we store it as one fits file with a 3d SCI ndarray
6 changes: 3 additions & 3 deletions datalab/datalab_session/file_utils.py
Original file line number Diff line number Diff line change
@@ -55,7 +55,7 @@ def create_tif(key: str, fits_path: np.ndarray) -> str:

return tif_path

def create_jpgs(cache_key, fits_paths: str, color=False) -> list:
def create_jpgs(cache_key, fits_paths: str, color=False, zmin=None, zmax=None) -> list:
"""
Create jpgs from fits files and save them to S3
If using the color option fits_paths need to be in order R, G, B
@@ -71,8 +71,8 @@ def create_jpgs(cache_key, fits_paths: str, color=False) -> list:

max_height, max_width = max(get_fits_dimensions(path) for path in fits_paths)

fits_to_jpg(fits_paths, large_jpg_path, width=max_width, height=max_height, color=color)
fits_to_jpg(fits_paths, thumbnail_jpg_path, color=color)
fits_to_jpg(fits_paths, large_jpg_path, width=max_width, height=max_height, color=color, zmin=zmin, zmax=zmax)
fits_to_jpg(fits_paths, thumbnail_jpg_path, color=color, zmin=zmin, zmax=zmax)

return large_jpg_path, thumbnail_jpg_path

Binary file not shown.
6 changes: 3 additions & 3 deletions datalab/datalab_session/tests/test_operations.py
Original file line number Diff line number Diff line change
@@ -237,9 +237,9 @@ def test_operate(self, mock_get_fits, mock_named_tempfile, mock_create_jpgs, moc
mock_save_fits_and_thumbnails.return_value = self.temp_rgb_path

input_data = {
'red_input': [{'basename': 'red_fits', 'source': 'local'}],
'green_input': [{'basename': 'green_fits', 'source': 'local'}],
'blue_input': [{'basename': 'blue_fits', 'source': 'local'}]
'red_input': [{'basename': 'red_fits', 'source': 'local', 'zmin': 0, 'zmax': 255}],
'green_input': [{'basename': 'green_fits', 'source': 'local', 'zmin': 0, 'zmax': 255}],
'blue_input': [{'basename': 'blue_fits', 'source': 'local', 'zmin': 0, 'zmax': 255}]
}

rgb = RGB_Stack(input_data)
4 changes: 4 additions & 0 deletions datalab/datalab_session/views.py
Original file line number Diff line number Diff line change
@@ -6,6 +6,8 @@
from datalab.datalab_session.analysis.line_profile import line_profile
from datalab.datalab_session.analysis.source_catalog import source_catalog
from datalab.datalab_session.analysis.get_tif import get_tif
from datalab.datalab_session.analysis.raw_data import raw_data


class OperationOptionsApiView(RetrieveAPIView):
""" View to retrieve the set of operations available, for the UI to use """
@@ -33,6 +35,8 @@ def post(self, request, action):
output = source_catalog(input)
case 'get-tif':
output = get_tif(input)
case 'raw-data':
output = raw_data(input)
case _:
raise Exception(f'Analysis action {action} not found')

Loading

0 comments on commit 9dd1397

Please sign in to comment.