The official implementation of U-DECN: End-to-End Underwater Object Detection ConvNet with Improved DeNoising Training.
This project is based on MMDetection.
- Python 3.8
- PyTorch 1.13.1+cu116
Step 1. Create a conda virtual environment and activate it.
conda create -n udecn python=3.8 -y
conda activate udecnStep 2. Install PyTorch following official instructions.
Linux and Windows
# Wheel CUDA 11.6
pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116# Conda CUDA 11.6
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidiaStep 3. Install MMDetection and dependent packages.
pip install -U openmim
mim install mmengine==0.10.1
mim install mmcv==2.0.1
mim install mmdet==3.2.0
pip install -r requirements.txtStep 4. Build Deformable Convolutional Networks (DCN) CUDA operations.
# Build DCN CUDA ops
sh tools_build_dcn/make_dcn.sh
# Test DCN CUDA ops
sh tools_build_dcn/test_dcn.shThe data structure DUO looks like below:
# DUO
data
├── DUO
│ ├── annotations
│ │ ├── instances_train.json
│ │ ├── instances_test.json
│ ├── images
│ │ ├── train
│ │ ├── test
# U-DECN 50 epoch
bash tools/dist_train.sh configs/u_decn/u-decn_r50_2xb4-50e_duo.py 2
# U-DECN 72 epoch
bash tools/dist_train.sh configs/u_decn/u-decn_r50_2xb4-6x_duo.py 2
# U-DECN 100 epoch
bash tools/dist_train.sh configs/u_decn/u-decn_r50_2xb4-100e_duo.py 2The weight .pth of U-DECN is available here.
# U-DECN 50 epoch
bash tools/dist_test.sh configs/u_decn/u-decn_r50_2xb4-50e_duo.py u-decn_r50_2xb4-50e_duo.pth 2
# U-DECN 72 epoch
bash tools/dist_test.sh configs/u_decn/u-decn_r50_2xb4-6x_duo.py u-decn_r50_2xb4-6x_duo.pth 2
# U-DECN 100 epoch
bash tools/dist_test.sh configs/u_decn/u-decn_r50_2xb4-100e_duo.py u-decn_r50_2xb4-100e_duo.pth 2@article{liu2025udecn,
title={U-DECN: End-to-End Underwater Object Detection ConvNet With Improved Denoising Training},
author={Liu, Zhuoyan and Wang, Bo and Wang, Bing and Li, Ye},
journal={IEEE Transactions on Geoscience and Remote Sensing},
volume={63},
pages={1-9},
year={2025},
doi={10.1109/TGRS.2025.3595158},
}