Skip to content

LSB-dev/Publicly-Available-Datasets-For-Electric-Load-Forecasting

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

40 Commits
Β 
Β 
Β 
Β 

Repository files navigation

A simle header image

Publicly Available Datasets For Electric Load Forecasting

A (hopefully eventually) complete listing of the most popular electric LF datasets

Why?

We found it difficult to find suitable datasets in the flood of information. So we came up with the idea of doing a proper search and making the results available to the public.

What?

Based on a sample set of representative publications, relevant, publicly accessible data sets were extracted, structured and analyzed. The details of the search can be found in the scientific publication: https://doi.org/10.15488/17659

Improvements? 🀝

We are happy about any kind of cooperation, feedback or extension to make the list even more valuable for other scientists. So feel free to expand the list and initiate a pull request.

The list

ID Abbrev Name Domain1 Resolution2 Features3 Duration4 Spanned years Horizons5 Regions6 Type7 Links Access8
1 ISO-NE New England Independent System Operator S 60 E 108 2003-2014 βŒβœ”οΈβœ”οΈβŒ βœ”οΈ πŸ“¦ πŸ”—Link πŸ”“
2 NYISO New York Independent System Operator S 5 E 264 2001-2023 βœ”οΈβœ”οΈβœ”οΈβŒ βœ”οΈ πŸ“¦ πŸ”—Link πŸ”“
3 PJM PJM Hourly Energy Consumption S 60 E 240 1998-2018 βŒβœ”οΈβœ”οΈβœ”οΈ βœ”οΈ πŸ“¦ πŸ”—Link πŸ”“
4 CIF CIF 2016 competition dataset ? d,m,y Undef. 8-909 unknown βŒβŒβœ”οΈβœ”οΈ ❌ πŸ“¦ πŸ”—Link πŸ”“
5 GEFCOM14 GEFCom 2014 S 60 E, W, T, PV 10 2021 βŒβœ”οΈβŒβŒ ❌ πŸ“¦ πŸ”—Link πŸ”“
6 EUNITE EUNITE 2001 S 30 E, T, H 24 1997-1999 βŒβœ”οΈβœ”οΈβŒ ❌ πŸ“¦ πŸ”—Link πŸ”“
7 ENTSO-E ENTSO-E electric load dataset S 60 E <=288 till 2015 βŒβœ”οΈβœ”οΈβœ”οΈ βœ”οΈ πŸ“¦ πŸ”—Link πŸ”“
299 EWELD Large-Scale Industrial and Commercial Load Dataset in Extreme Weather Events I 15 E, W, xW <=74 2016-2022 βœ”οΈβœ”οΈβœ”οΈβœ”οΈ βœ”οΈ (386) πŸ“¦ πŸ”—Link πŸ”“
289 WPuQ Electrical single-family house and heat pump load R <1 E 30 2018-2020 βŒβœ”οΈβœ”οΈβŒ βœ”οΈ (38) πŸ“¦ πŸ”—Link πŸ”“
329 PanETESA Panama ETESA S 60 E, W, H 66 2015-2020 βŒβœ”οΈβœ”οΈβœ”οΈ ❌ πŸ“¦ πŸ”—Link πŸ”“
389 REFIT REFIT: Electrical Load Measurements H 8sec E 20 2013-2015 βœ”οΈβœ”οΈβœ”οΈβŒ βœ”οΈ(20) πŸ“¦ πŸ”—Link1 πŸ”—Link2 πŸ”“
399 ECD-UY household electricity consumption dataset of Uruguay S, R 1-15 E 11-23 2019-2020 βœ”οΈβœ”οΈβŒβŒ βœ”οΈ(9) πŸ“¦ πŸ”—Link1 πŸ”—Link2 πŸ”“
409 IDEAL IDEAL UK Household Energy Dataset 255 R 1-12sec E, W, T 23 2019-2020 βœ”οΈβœ”οΈβœ”οΈβŒ βœ”οΈ(255) πŸ“¦ πŸ”—Link1 πŸ”—Link2 πŸ”“
419 HANOI-Res Residential Apartments Dataset Hanoi, Vietnam (CAMaRSEC Project) R 15 E, W, T 12 2020-2021 βœ”οΈβœ”οΈβŒβŒ βœ”οΈ(49) πŸ“¦ πŸ”—Link1 πŸ”—Link2 πŸ”“
429 UK-DALE UK Domestic Appliance Level Electricity (UKERC EDC), Disaggregated (6s) and aggregated (1s) R 1-6sec E 5-53 2012-2017 βœ”οΈβœ”οΈβœ”οΈβœ”οΈ βœ”οΈ(5) πŸ“¦ πŸ”—Link1 πŸ”—Link2 πŸ”—Link3 πŸ”“
8 LCL LCL Load Dataset (London Households) H 30 E 12 2013 βŒβœ”οΈβŒβŒ ❌ πŸ“ πŸ”—Link πŸ”“
9 SET Energy Consumption Dataset for Milano/Trento S 10 E <1 2013 βœ”οΈβŒβŒβŒ ❌ πŸ“ πŸ”—Link πŸ”“
10 BDG-Proj Building Data Genome Project S 60 E 12 unknown βŒβœ”οΈβŒβŒ βœ”οΈ πŸ“ πŸ”—Link πŸ”“
349 BDG-Proj2 Building Data Genome Project 2 (BDG2) R 60 E 24 2016-2017 βŒβœ”οΈβœ”οΈβŒ βœ”οΈ (1636) πŸ“ πŸ”—Link πŸ”“
11 IHPC Individual Household power consumption S 1 E 48 2006-2010 βœ”οΈβœ”οΈβœ”οΈβœ”οΈ ❌ πŸ“ πŸ”—Link πŸ”“
12 GEFCOM12 GEFCom 2012 S 60 E, W, T 42 2004-2008 βŒβœ”οΈβœ”οΈβŒ ❌ πŸ“ πŸ”—Link πŸ”“
13 OPSD-TS Open Power System Data TS S 15-60 E, PV, W 148 2005-2019 βœ”οΈβœ”οΈβœ”οΈβœ”οΈ βœ”οΈ πŸ“ πŸ”—Link πŸ”“
279 OPSD-HH Open Power System Data Household Data R, I 1-60 E, PV diff 2012-2019 βœ”οΈβœ”οΈβœ”οΈβœ”οΈ βœ”οΈ πŸ“ πŸ”—Link πŸ”“
14 ELD ElectricityLoadDiagrams20112014 S 15 E 36 2011-2014 βœ”οΈβœ”οΈβœ”οΈβœ”οΈ ❌ πŸ“ πŸ”—Link1 πŸ”—Link2 πŸ”“
15 ENERTALK ENERTALK Dataset Korea (household) S 15 hz E 12 2016 βœ”οΈβœ”οΈβŒβŒ ❌ πŸ“ πŸ”—Link πŸ”“
16 S-TSO Spanish Transmission Service operator (TSO) H 60 >25 24 2017-2018 βŒβœ”οΈβœ”οΈβŒ ❌ πŸ“ πŸ”—Link πŸ”“
269 CER CER Smart Metering Project R,I 30 E 18 2009-2010 βŒβœ”οΈβœ”οΈβŒ βœ”οΈ(5237) πŸ“ πŸ”—Link πŸ“§
309 DEDDIAG domestic electricity demand dataset (individual appliances in Germany) R 1Hz E 2-44 2011-2014 βœ”οΈβœ”οΈβœ”οΈβŒ βœ”οΈ(14) πŸ“ πŸ”—Link1 πŸ”—Link2 πŸ”“
319 AusSmartGrid Electricity Use Interval Reading R 60 E ? 2010-2014 βŒβœ”οΈβœ”οΈβŒ βœ”οΈ πŸ“ πŸ”—Link πŸ”“
359 UK-GRID Electricity consumption UK 2009-2024 S 30 E 180 2009-2024 βŒβœ”οΈβœ”οΈβœ”οΈ ❌ πŸ“ πŸ”—Link πŸ”“
369 HoustonRes Houston Residential power usage (one house) R 60 E, W 49 2016-2020 βŒβœ”οΈβœ”οΈβŒ ❌ πŸ“ πŸ”—Link πŸ”“
379 CU-BEMS-Bangkok Bangkok CU-BEMS, smart building energy and IAQ data R 1 E, W 18 2018-2019 βœ”οΈβœ”οΈβœ”οΈβŒ ❌ πŸ“ πŸ”—Link πŸ”“
17 RTE-France RTE France S 30 E 12 2012-2020 βŒβœ”οΈβŒβŒ βœ”οΈ 🌐 πŸ”—Link πŸ”“
18 AEMO Australian Energy market operator H 60 E 12 2013 βŒβœ”οΈβŒβŒ βœ”οΈ 🌐 πŸ”—Link πŸ”“
19 IESO-O IESO Ontario H 60 E, P 20+ 2022-2023 βŒβœ”οΈβœ”οΈβŒ ❌ 🌐 πŸ”—Link πŸ”“
20 AESO Alberta Electric Sys. Op. Electrical Load Dataset S 60 E 132 2005-2016 βŒβœ”οΈβœ”οΈβœ”οΈ ❌ 🌐 πŸ”—Link πŸ”“
21 PPS Polish power system S 15-60 E 120+ 2013- now βœ”οΈβœ”οΈβœ”οΈβœ”οΈ ❌ 🌐 πŸ”—Link πŸ”“
22 AUSGRID Ausgrid: Distribution zone substation S 15 E 204 2005-2022 βœ”οΈβœ”οΈβœ”οΈβœ”οΈ βœ”οΈ(>100) 🌐 πŸ”—Link πŸ”“
23 KPX KPX Korea H 5 E 240 2003-now βœ”οΈβœ”οΈβœ”οΈβœ”οΈ ❌ 🌐 πŸ”—Link πŸ”“
24 ADMIE Independent Electricity Transmission Operator S 60 E 120+ 2011-now βŒβœ”οΈβœ”οΈβœ”οΈ βœ”οΈ 🌐 πŸ”—Link πŸ”“
25 Pecan Pecan Street dataset S 15 E, W 24 2017-2018 βœ”οΈβœ”οΈβœ”οΈβŒ βœ”οΈ 🌐 πŸ”—Link πŸ”“
339 Cal-ISO California ISO Hourly Load Data S 60 E 100+ 2014-now βŒβœ”οΈβœ”οΈβœ”οΈ βœ”οΈ 🌐 πŸ”—Link1 πŸ”—Link2 πŸ”“

Legend

1Domain: Either system level load (S), residential load (R) or Industry (I)

2Resolution: In minutes, if not other stated (d=day, m=month, y=year, hz=1sec)

3Features: Electricity (E), Weather (W), Extreme Weather Events, e.g. heat periods and taifune (xW), Temperature (T), Photovoltaic production (PV), Holiday features (H), Price (P)

4Duration: in number of months

5Forecasting-Horizons for modeling applicable: Very Short Term (VST), Short Term (ST), Medium Long Term (MT), Long Term (LT)

6Dataset records multiple regions / consumers separately (e.g. buildings, cities, countries) or disaggregated single loads available. Numbers in brackets indicate the number of regions / consumers / loads

7Type: Either πŸ“¦ = a collection (accumulation of datasets), πŸ“=a file or achive or 🌐=a data platform / API

8Access: Either πŸ”“ = can be accessed directly (no login, no request), πŸ“§ = written application / request has to be sent first

9 not part of the original Paper, added later (only here)

for further details take a look at the publication below ‡️

How to cite

If this work has helped you with your scientific work, we would appreciate a proper mention. ❀️

Our citation recommendation is:

Baur, L.; Chandramouli, V.; Sauer, A.: Publicly Available Datasets For Electric Load Forecasting – An Overview. In: Herberger, D.; HΓΌbner, M. (Eds.): Proceedings of the CPSL 2024. Hannover : publish-Ing., 2024, S. 1-12. DOI: https://doi.org/10.15488/17659

BibTeX entry

@inproceedings{baur2024datasets,
  author    = {Baur, Lukas and Chandramouli, Vignesh and Sauer, Alexander},
  title     = {Publicly Available Datasets For Electric Load Forecasting – An Overview},
  booktitle = {Proceedings of the CPSL 2024},
  editor    = {Herberger, D. and HΓΌbner, M.},
  location  = {Hannover},
  publisher = {publish-Ing.},
  year      = {2024},
  pages     = {1--12},
  doi       = {10.15488/17659}
}

Acknowledgements

πŸ’° We'd like to thank the German Federal Ministry of Economic Affairs and Climate Action (BMWK) and the project supervision of the Project Management JΓΌlich (PtJ) for the project β€žFlexGUIdeβ€œ which allowed for the work.

πŸ’‘ We would also like to thank an anonymous reviewer who suggested publishing the datasets not only in the above-mentioned publication but also as a repository.

πŸ‘¨β€πŸŽ“ We would like to thank K. Kunkel, whose master's thesis contributed greatly to the expansion of the initial dataset collection.

About

Here, the most popular Electric Load Forecasting datasets are collected centrally. Feel free to support this work. πŸ”₯

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published