Releases: Lantianzz/Scorecard-Bundle
Releases · Lantianzz/Scorecard-Bundle
V1.2.2 fixed some non-critical bugs in previous versions
V1.2.2 fixed some non-critical bugs in previous versions.
- Corrected the use of deprecated parameters
- When using
plt.annotate()
in previous versions, parameters
is used to pass in the text. However, this parameter has been renamed astext
and from Python3.9 continuing usings
may cause in TypeErrorannotate() missing 1 required positional argument: 'text'
. In V1.2.2 parametertext
is used when usingplt.annotate()
-
Change default parameter values: Change the default value of parameter
min_intervals
in ChiMerge from 1 to 2. -
Adjust the naming of private variables in classes:
- Several classes in ScorecardBundle are inherited from the
BaseEstimator
andTransformerMixin
classess in Scikit-learn, and for each parameter Scikit-learn checks whether it is existed inside the class as an property with the exact same name. The previous codes set such parameters as private variables with two underscores as prefix. This resulted in errors likecannot found __xx in class xxxx
when users try to print the instance or access these private variables. Note that this problem won't stop you from getting the correct results. - V1.2.2 adjusted the use of OOP in
ChiMerge
,WOE
andLogisticRegressionScoreCard
to avoid such problem.
V1.2.0
Updates in V1.2.0
-
feature_discretization:
- [Add] Add parameter
decimal
to classChiMerge.ChiMerge()
, which allows users to control the number of decimals of the feature interval boundaries. - [Add] Add data table to the feature visualization
FeatureIntervalAdjustment.plot_event_dist()
. - [Add] Add function
FeatureIntervalAdjustment.feature_stat()
that computes the input feature's sample distribution, including the sample sizes, event sizes and event proportions of each feature value.
- [Add] Add parameter
-
feature_selection.FeatureSelection:
- [Add] Add function
identify_colinear_features()
that identifies the highly-correlated features pair that may cause colinearity problem. - [Add] Add function
unstacked_corr_table()
that returns the unstacked correlation table to help analyze the colinearity problem.
- [Add] Add function
-
model_training.LogisticRegressionScoreCard:
- [Fix] Alter the
LogisticRegressionScoreCard
class so that it now accepts all parameters ofsklearn.linear_model.LogisticRegression
and itsfit()
fucntion accepts all parameters of thefit()
ofsklearn.linear_model.LogisticRegression
(includingsample_weight
) - [Add] Add parameter
baseOdds
forLogisticRegressionScoreCard
. This allows users to pass user-defined base odds (# of y=1 / # of y=0) to the Scorecard model.
- [Fix] Alter the
-
model_evaluation.ModelEvaluation:
- [Add] Add function
pref_table
, which evaluates the classification performance on differet levels of model scores . This function is useful for setting classification threshold based on precision and recall.
- [Add] Add function
-
model_interpretation:
- [Add] Add function
ScorecardExplainer.important_features()
to help interpret the result of a individual instance. This function indentifies features who contribute the most in pusing the total score of a particular instance above a threshold.
- [Add] Add function