This code base reproduces the experiments of the ICLR 2022 paper "Modular Lifelong Reinforcement Learning via Neural Composition".
Primary dependencies:
- Python 3.6
- gym-minigrid: install local version via
pip install -e gym-minigrid
- torch-ac-composable: install local version via
pip install -e torch-ac-composable
- pytorch version 1.5.1
To reproduce the results of our compositional agent, execute the following command from the torch-ac-composable/torch_ac_composable/
directory:
python -m experiments.ppo_minigrid_lifelong --algo comp-ppo --learning-rate 1e-3 --steps-per-proc 256 --batch-size 64 --procs 16 --num-tasks 64 --num-steps 1000000 --max-modules 4
Primary dependencies:
- Python 3.6
- Spinning Up: install local version via
pip install -e spinningup
- Robosuite: install local version via
pip install -e robosuite
- pytorch version 1.8.1
To reproduce the results of our compositional agent, execute the following command from the training/
directory:
python train_lifelong_ppo.py --algo comp-ppo --num-tasks 48 --cpu 40 --gamma 0.995 --epochs 150 --steps 8000
If you use this work, please make sure to cite our paper:
@inproceedings{
mendez2022modular,
title={Modular Lifelong Reinforcement Learning via Neural Composition},
author={Jorge A Mendez and Harm van Seijen and Eric Eaton},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=5XmLzdslFNN}
}