Skip to content

Lifelong-ML/Mendez2022ModularLifelongRL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Modular Lifelong RL

This code base reproduces the experiments of the ICLR 2022 paper "Modular Lifelong Reinforcement Learning via Neural Composition".

Discrete 2-D tasks

Primary dependencies:

  • Python 3.6
  • gym-minigrid: install local version via pip install -e gym-minigrid
  • torch-ac-composable: install local version via pip install -e torch-ac-composable
  • pytorch version 1.5.1

To reproduce the results of our compositional agent, execute the following command from the torch-ac-composable/torch_ac_composable/ directory:

python -m experiments.ppo_minigrid_lifelong --algo comp-ppo --learning-rate 1e-3 --steps-per-proc 256 --batch-size 64 --procs 16 --num-tasks 64 --num-steps 1000000 --max-modules 4

Robotic Manipulation

Primary dependencies:

  • Python 3.6
  • Spinning Up: install local version via pip install -e spinningup
  • Robosuite: install local version via pip install -e robosuite
  • pytorch version 1.8.1

To reproduce the results of our compositional agent, execute the following command from the training/ directory:

python train_lifelong_ppo.py --algo comp-ppo --num-tasks 48 --cpu 40 --gamma 0.995 --epochs 150 --steps 8000

Citing our work

If you use this work, please make sure to cite our paper:

@inproceedings{
    mendez2022modular,
    title={Modular Lifelong Reinforcement Learning via Neural Composition},
    author={Jorge A Mendez and Harm van Seijen and Eric Eaton},
    booktitle={International Conference on Learning Representations},
    year={2022},
    url={https://openreview.net/forum?id=5XmLzdslFNN}
}

About

Source code to reproduce experiments from Mendez et al., ICLR '22

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages