PIPCFR: Pseudo-outcome Imputation with Post-treatment Variables for Individual Treatment Effect Estimation
You will need to install:
- geomloss==0.2.4
- numpy
- pandas
- scikit_learn==1.0.2
- scikit_uplift==0.4.0
- torch==1.10.1
- tensorboard
- protobuf==3.20
- scikit-optimize
- ot==0.9.5
- tensorflow-gpu==1.15.0
- causalml
The dependencies for Pairnet and ESCFR from github:
git clone https://github.com/nlokeshiisc/pairnet_release.gitIHDP
cd data/IHDP
python generate_data.py
cd ..
NEWS
cd data/NEWS
python generate_data.py
cd ..
Synthetic Data
cd data/Synthetic
bash generate.sh
cd ..
Run experiments for NEWS dataset
MODELS_JSON='./examples/model_news.json' python run_experiment.py
Run experiments for IHDP dataset
MODELS_JSON='./examples/model_ihdp.json' python run_experiment.py
Run experiments for Synthetic dataset
MODELS_JSON='./examples/model_synthetic.json' python run_experiment.py
MODELS_JSON is the configure information of models. You can add model in ./examples/.
If you find this project useful in your research, please consider citing:
- PIPCFR is licensed under the Apache License 2.0.