Skip to content

LinZichuan/PIPCFR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PIPCFR: Pseudo-outcome Imputation with Post-treatment Variables for Individual Treatment Effect Estimation

Paper

Installation

You will need to install:

  • geomloss==0.2.4
  • numpy
  • pandas
  • scikit_learn==1.0.2
  • scikit_uplift==0.4.0
  • torch==1.10.1
  • tensorboard
  • protobuf==3.20
  • scikit-optimize
  • ot==0.9.5
  • tensorflow-gpu==1.15.0
  • causalml

The dependencies for Pairnet and ESCFR from github:

git clone https://github.com/nlokeshiisc/pairnet_release.git

Generate Training Data

IHDP

cd data/IHDP
python generate_data.py
cd ..

NEWS

cd data/NEWS
python generate_data.py
cd ..

Synthetic Data

cd data/Synthetic
bash generate.sh
cd ..

Run Experiments

Run experiments for NEWS dataset

MODELS_JSON='./examples/model_news.json' python run_experiment.py

Run experiments for IHDP dataset

MODELS_JSON='./examples/model_ihdp.json' python run_experiment.py

Run experiments for Synthetic dataset

MODELS_JSON='./examples/model_synthetic.json' python run_experiment.py

MODELS_JSON is the configure information of models. You can add model in ./examples/.

Citation

If you find this project useful in your research, please consider citing:

License

  • PIPCFR is licensed under the Apache License 2.0.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published