A curated list of 20 clustering algorithms implemented in or accessible via Scikit-learn ðŸ§
These algorithms are widely used for unsupervised learning, pattern discovery, and data segmentation.
| 🔢 Serial No. | 🧩 Algorithm Name | 📦 Scikit-learn Import Path |
|---|---|---|
| 1 | K-Means | from sklearn.cluster import KMeans |
| 2 | MiniBatch K-Means | from sklearn.cluster import MiniBatchKMeans |
| 3 | Agglomerative Clustering | from sklearn.cluster import AgglomerativeClustering |
| 4 | DBSCAN | from sklearn.cluster import DBSCAN |
| 5 | OPTICS | from sklearn.cluster import OPTICS |
| 6 | Mean Shift | from sklearn.cluster import MeanShift |
| 7 | Spectral Clustering | from sklearn.cluster import SpectralClustering |
| 8 | Birch | from sklearn.cluster import Birch |
| 9 | Affinity Propagation | from sklearn.cluster import AffinityPropagation |
| 10 | Gaussian Mixture Model (GMM) | from sklearn.mixture import GaussianMixture |
| 11 | Bayesian Gaussian Mixture | from sklearn.mixture import BayesianGaussianMixture |
| 12 | Feature Agglomeration | from sklearn.cluster import FeatureAgglomeration |
| 13 | Bisecting K-Means | from sklearn.cluster import BisectingKMeans |
| 14 | K-Medoids | from sklearn_extra.cluster import KMedoids (scikit-learn-extra) |
| 15 | Fuzzy C-Means | from fcmeans import FCM (external library) |
| 16 | Self-Organizing Maps (SOM) | from minisom import MiniSom (external library) |
| 17 | HDBSCAN | from hdbscan import HDBSCAN (external library) |
| 18 | Spectral Biclustering | from sklearn.cluster import SpectralBiclustering |
| 19 | Spectral Coclustering | from sklearn.cluster import SpectralCoclustering |
| 20 | Ward Hierarchical Clustering | from sklearn.cluster import AgglomerativeClustering (with linkage='ward') |
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
# Sample data
X, _ = make_blobs(n_samples=300, centers=3, random_state=42)
# Initialize and fit model
model = KMeans(n_clusters=3, random_state=42)
model.fit(X)
print(model.labels_)