Skip to content

A curated list of 20 clustering algorithms implemented in or accessible via Scikit-learn 🧠 These algorithms are widely used for unsupervised learning, pattern discovery, and data segmentation.

License

Notifications You must be signed in to change notification settings

MainakVerse/Clusterings

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🤖 Machine Learning Clustering Algorithms

Python Scikit-learn License Contributions Status

A curated list of 20 clustering algorithms implemented in or accessible via Scikit-learn 🧠
These algorithms are widely used for unsupervised learning, pattern discovery, and data segmentation.


📊 Clustering Algorithms Overview

🔢 Serial No. 🧩 Algorithm Name 📦 Scikit-learn Import Path
1 K-Means from sklearn.cluster import KMeans
2 MiniBatch K-Means from sklearn.cluster import MiniBatchKMeans
3 Agglomerative Clustering from sklearn.cluster import AgglomerativeClustering
4 DBSCAN from sklearn.cluster import DBSCAN
5 OPTICS from sklearn.cluster import OPTICS
6 Mean Shift from sklearn.cluster import MeanShift
7 Spectral Clustering from sklearn.cluster import SpectralClustering
8 Birch from sklearn.cluster import Birch
9 Affinity Propagation from sklearn.cluster import AffinityPropagation
10 Gaussian Mixture Model (GMM) from sklearn.mixture import GaussianMixture
11 Bayesian Gaussian Mixture from sklearn.mixture import BayesianGaussianMixture
12 Feature Agglomeration from sklearn.cluster import FeatureAgglomeration
13 Bisecting K-Means from sklearn.cluster import BisectingKMeans
14 K-Medoids from sklearn_extra.cluster import KMedoids (scikit-learn-extra)
15 Fuzzy C-Means from fcmeans import FCM (external library)
16 Self-Organizing Maps (SOM) from minisom import MiniSom (external library)
17 HDBSCAN from hdbscan import HDBSCAN (external library)
18 Spectral Biclustering from sklearn.cluster import SpectralBiclustering
19 Spectral Coclustering from sklearn.cluster import SpectralCoclustering
20 Ward Hierarchical Clustering from sklearn.cluster import AgglomerativeClustering (with linkage='ward')

🚀 Usage Example

from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs

# Sample data
X, _ = make_blobs(n_samples=300, centers=3, random_state=42)

# Initialize and fit model
model = KMeans(n_clusters=3, random_state=42)
model.fit(X)

print(model.labels_)

About

A curated list of 20 clustering algorithms implemented in or accessible via Scikit-learn 🧠 These algorithms are widely used for unsupervised learning, pattern discovery, and data segmentation.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages