Skip to content

Fast Image Stylization using Instance Normalization with Pytorch

Notifications You must be signed in to change notification settings

Malikanhar/Neural-Style-Transfer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Neural-Style-Transfer

Fast Image Stylization using Instance Normalization with Pytorch

Start Training

python src/style_transfer.py train 
      --dataset train 
      --style-image style/mosaic.jpg 
      --save-model-dir save 
      --model-name mosaic 
      --cuda 1

Flag description :

--dataset folder containing images for training
--style-image style of image you want to use
--save-model-dir name of the folder where the model will be stored
--model-name name of the model to be saved with .model extensions
--cuda set it to 1 for running in GPU and 0 for CPU

There are several other flags that you can use :

--epochs number of training epoch, default is 2
--batch-size number of batch size for training, default is 4
--pretrained-model pre-trained model path with .model extensions, default is None
--checkpoint-model-dir path to folder where checkpoints of trained models will be saved, default is None
--image-size size of training image, default is 256 x 256
--style-size size of style-image, default is the original size of style-image
--seed random seed for training, default 42
--content-weight weight for content-loss, default is 1e5
--style-weight weight for style-loss, default is 1e10
--lr learning rate, default is 1e-3
--log-interval number of images after which the training loss is logged, default is 500
--checkpoint-interval number of batches after which a checkpoint of the trained model will be created, default is 2000

Evaluate

python src/style_transfer.py eval 
      --content-image image.jpg 
      --output-image image_mosaic.jpg
      --model save/mosaic.model 
      --cuda 1

Flag description :

--content-image path to content image you want to stylize
--output-image path for saving the output image
--model saved model to be used for styling the image
--cuda set it to 1 for running in GPU and 0 for CPU

Demo

The demo notebook are available in Google Colab

Result

Result

Reference

Fast Neural style

About

Fast Image Stylization using Instance Normalization with Pytorch

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages