Skip to content

Formal to Formal Mathematics Benchmark

Notifications You must be signed in to change notification settings

MantasBaksys/miniF2F

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MiniF2F

MiniF2F is a formal mathematics benchmark (translated across multiple formal systems) consisting of exercise statements from olympiads (AMC, AIME, IMO) as well as high-school and undergraduate maths classes.

The goal of the project is to provide a shared benchmark to evaluate and directly compare automated theorem proving systems based on the formal systems targeted, initially Lean, and Metamath (targeting also Hol Light and Isabelle).

The benchmark (released under permissive licenses (MIT for Metamath, Apache for Lean)) is a work in progress and contributions are welcome and encouraged through pull requests.

Citation

The benchmark is described in detail in the following pre-print:

@article{zheng2021minif2f,
  title={MiniF2F: a cross-system benchmark for formal Olympiad-level mathematics},
  author={Zheng, Kunhao and Han, Jesse Michael and Polu, Stanislas},
  journal={arXiv preprint arXiv:2109.00110},
  year={2021}
}

Statistics

Test Valid
Lean 244 244
Metamath 244 244
Hol Light 165 165
Isabelle 60 35

Structure

Each problem is represented by a unique name and a file for each of the formal systems we target. Each file consists at minima in the problem statement and optionally one or more example proofs associated with it. The benchmark is divided in two splits:

  • valid: validation set that can be used while designing automated theorem proving systems (early-stopping, reinforcement learning, data-augmentation, curriculum design, ...).
  • test: held-out test set reserved for final evaluation.

Naming conventions are still a work in progress. Olympiads problems are generally named after their competition year and problem number (eg. imo-1990-p3 or aime-1983-p2). Problems coming from a particular dataset (eg the MATH dataset) are named to ease their retrieval (eg. mathd-algebra-125). Other problems are prefixed by a category hint and a unique name in the style of Metamath naming conventions (eg. induction-11div10tonmn1ton).

Each exercise file complies to the following system-specific conventions.

Lean

To install the project make sure you have elan installed, then in the directory where you want the project installed run:

git clone https://github.com/openai/miniF2F
cd miniF2F
leanpkg configure
leanpkg build

Since having one file per statement causes slowness in Lean parsing stage, all Lean statements are exceptionally aggregated in two files (valid.lean and test.lean). These files contain a list of the problem statements defined as theorems. Optionally, proofs for these statements are provided as well as potential lemmas to support the ground-truth proof.

No theorem should appear that do not correspond to a problem statement; use lemma instead.

Please use lean/scripts/lint_style.py to check all the statements pass the linter. You can also make use of lean/scripts/simple_formatter.sh to enforce a few basic formatting rules.

The lean folder is released under the Apache License (so that it is aligned with Lean's mathlib license).

Metamath

Each file contains the problem statement with the same name as the problem unique name. The statement is commented (using Metamath convention) if provided without proof.

The metamath folder is released under the MIT License.

HOL Light

Each file contains the problem statement defined as a HOL Light term whose name must match the file name.

The hollight folder is released under the FreeBSD License.

Isabelle

Each file contains the problem statement defined as a theorem whose name must match the file name, optionally with a proof for it as well as the necessary imports.

The isabelle folder is released under the Apache License.

Code of Conduct and Contributions

MiniF2F is meant to serve as a shared and useful resource for the machine learning community working on formal mathematics.

There is no obligation tied with the use and reporting of a result based on miniF2F. But if you're using it and discovering new proofs (manually or automatically) please contribute them back to the benchmark.

All contributions, such as new statements for later versions, addition of missing statements for existing versions, bug fixes, additional proofs are all welcome.

Versioning

A version of miniF2F is defined by a frozen set of statements. The goal for each version is to get full coverage on all formal systems for that version even if that might not be the case when the version is frozen.

When reporting a result based on miniF2F please always specify the version you used. The current version is v1, frozen as of August 2021, including 244 statements (fully translated to Lean and Metamath but still WIP in other formal systems).

Each version will live in its own branch to allow later additions of translated statements or fixes to existing statements as needed. The main branch remains reserved for active development and should not be used when reporting results.

Active version

  • Version: v1
  • Freeze date: August 2021
  • Branch: v1

About

Formal to Formal Mathematics Benchmark

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Objective-C++ 47.8%
  • Lean 27.2%
  • OCaml 9.4%
  • Isabelle 9.1%
  • Standard ML 3.2%
  • Python 3.0%
  • Shell 0.3%