Skip to content

Official code for the book "Mathematics for Machine Learning." Implements linear algebra, calculus, and probability concepts for ML algorithms like PCA and gradient descent from scratch in Python.

License

Notifications You must be signed in to change notification settings

Mathforcoding/mathematics-for-machine-learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 

Repository files navigation

mathematics-for-machine-learning

Mathematics for Machine Learning (Working Title)

Status

Welcome to the future home of the official code repository for my upcoming book, "Mathematics for Machine Learning"!


About The Book

This book is being written for aspiring machine learning engineers, data scientists, and developers who want to move beyond just using libraries and truly understand the mathematical engines that power modern AI. My goal is to create the most intuitive, practical, and code-driven guide to the essential math you need to succeed.

This will not be a dry, academic textbook. Every mathematical concept will be tied directly to a practical machine learning algorithm, explained with visual intuition, and implemented from scratch in Python.

Key Topics Will Include (Tentative Table of Contents):

  • Part 1: The Language of Data - Core Linear Algebra (Vectors, Matrices, PCA)
  • Part 2: The Engine of Learning - Essential Calculus (Gradients, Gradient Descent, Backpropagation)
  • Part 3: Quantifying Uncertainty - Practical Probability & Statistics (Bayes' Theorem, Distributions, Bias-Variance Tradeoff)
  • Part 4: Building from Scratch - Complete, from-scratch implementations of Linear Regression, Logistic Regression, K-Means, and a simple Neural Network.

Stay Updated!

This project is in the early stages of writing. This README will be updated with the full code structure and setup instructions as the book's development progresses. Thank you for your interest!

About

Official code for the book "Mathematics for Machine Learning." Implements linear algebra, calculus, and probability concepts for ML algorithms like PCA and gradient descent from scratch in Python.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published