-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
364 lines (307 loc) · 11.6 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
---
title: "Peaky Blinders Network Analysis"
author: "Matteo Larrode"
date: "2024-12-05"
output: md_document
---
# Peaky Blinders Network Analysis
```{r message=FALSE, warning=FALSE}
library(igraph)
library(tidyverse)
library(ggrepel)
library(blockmodeling)
```
First, let's load the adjacency matrix of character interactions created previously.
```{r}
peaky_df <- readRDS("data/cooccurrence_df.rds")
peaky_adj_mat <- as.matrix(peaky_df)
# no self-links
diag(peaky_adj_mat) <- 0
```
Now, we can create the network from the adjacency matrix:
```{r}
peaky_network <- graph_from_adjacency_matrix(peaky_adj_mat,
mode = "undirected",
weighted = TRUE)
peaky_network <- set_vertex_attr(
peaky_network,
"name_edited",
value = str_to_title(str_replace_all(V(peaky_network)$name, "_", " "))
)
peaky_network
```
And we can produce an initial plot!
```{r}
set.seed(100)
layout1 <- layout_with_fr(peaky_network)
layout2 <- layout_with_kk(peaky_network)
layout3 <- layout_with_dh(peaky_network)
layout4 <- layout_with_lgl(peaky_network)
```
```{r}
plot.igraph(peaky_network,
edge.color="gray",
edge.curved=.1,
edge.width= 1+E(peaky_network)$weight/15,
vertex.size = degree(peaky_network)/3,
vertex.frame.color="#555555",
vertex.label = V(peaky_network)$name_edited,
vertex.color = "#FBD87F",
vertex.label.color="black",
vertex.label.cex=1+betweenness(peaky_network, weights = NA)/1000,
margin=c(0,0,0,0) ,
asp=0,
layout=layout4,
main = "Network of Peaky Blinders (Seasons 1-6)")
```
## Characteristics of the Network and Nodes
### Density and diameter
```{r}
paste0("Density: ", edge_density(peaky_network))
paste0("Diameter: ", diameter(peaky_network, weights = NA))
```
We can check the shortest paths between nodes to see which characters have the longest distance:
```{r}
geodesics <- shortest.paths(peaky_network, weights = NA)
```
### Measures of centrality
Let's create a dataframe reporting centrality measures for the most central characters.
```{r}
centrality_df <- tibble(
names(V(peaky_network)),
degree(peaky_network),
strength(peaky_network),
closeness(peaky_network, weights = NA, normalized = TRUE),
betweenness(peaky_network, weights = NA, directed = FALSE, normalized = TRUE),
eigen_centrality(peaky_network)$vector,
eigen_centrality(peaky_network, weights = NA)$vector,
page.rank(peaky_network)$vector,
page.rank(peaky_network, weights = NA)$vector
)
names(centrality_df) <- c(
"Name",
"Degree",
"Weighted Degree",
"Closeness \n(normalised)",
"Betweenness \n(normalised)",
"Eigenvector",
"Eigenvector (unweighted)",
"Google PageRank",
"Google PageRank (unweighted)")
centrality_df_ranked <- centrality_df |>
mutate(degree_rank = rank(as.numeric(Degree)),
w_degree_rank = rank(as.numeric(`Weighted Degree`)),
eigen_rank = rank(as.numeric(Eigenvector)),
w_eigen_rank = rank(as.numeric(`Eigenvector (unweighted)`))) |>
# check for differences when going to degree to eigenvector
mutate(diff = eigen_rank - degree_rank,
w_diff = w_eigen_rank - w_degree_rank)
toselect <- c(
"thomas", "polly", "ada",
"michael", "arthur",
"grace", "finn","john",
"sabini", "curly")
order_names <- c(
"Thomas", "Polly", "Ada",
"Michael", "Arthur",
"Grace", "Finn", "John",
"Sabini", "Curly")
centrality_subset_df <- centrality_df |>
filter(Name %in% toselect) |>
arrange(match(Name, toselect)) |>
select("Name", "Degree", "Weighted Degree",
"Closeness \n(normalised)", "Betweenness \n(normalised)",
"Eigenvector", "Google PageRank") |>
pivot_longer(-Name, names_to = "centrality", values_to = "value") |>
group_by(centrality) |>
arrange(desc(value)) |>
mutate(order = row_number()) |>
mutate(Name = str_to_title(str_replace_all(Name, "_", " ")),
Name = factor(Name, levels = order_names)) |>
ungroup() |>
mutate(
centrality = factor(
centrality,
levels = c("Name", "Degree", "Weighted Degree",
"Closeness \n(normalised)", "Betweenness \n(normalised)",
"Eigenvector", "Google PageRank")))
```
Now let's follow up with a visualisation
```{r}
centrality_subset_df |>
ggplot(aes(Name, value, fill = centrality)) +
geom_bar(stat ="identity") +
facet_grid(~ centrality, scales = "free", shrink = TRUE) +
coord_flip() +
geom_label(aes(label = order), size = 4) +
scale_x_discrete(limits = rev(levels(centrality_subset_df$Name))) +
theme_minimal()+
theme(plot.title = element_blank(),
axis.title.x = element_blank(),
axis.text.x = element_text(size = 10),
strip.text = element_text(size = 11, face = "bold"),
axis.title.y = element_blank(),
axis.text.y = element_text(size = 11),
panel.spacing.x = unit(6, "mm"),
legend.position = "none")
```
### Overall centralisation of the network
```{r}
summary(degree(peaky_network))
paste0("Unwieghted degree variance: ", var(degree(peaky_network)))
paste0("Unwieghted degree standard deviation: ", sd(degree(peaky_network)))
paste0("Freeman’s general formula for centralization: ", centralization.degree(peaky_network, loops = FALSE)$centralization)
```
## Characteristics of groups of nodes
### Cliques
First, we can identify the largest cliques in the network:
```{r}
large_cl <- largest_cliques(peaky_network)
large_cl
```
```{r}
V(peaky_network)$cliques11 <- ifelse(V(peaky_network) %in% unlist(cliques(peaky_network, min = 11, max = 100)), 2, 1)
plot.igraph(peaky_network,
edge.color="gray",
edge.curved=.1,
edge.width= 1+E(peaky_network)$weight/15,
vertex.size = degree(peaky_network)/3,
vertex.frame.color="#555555",
vertex.label = V(peaky_network)$name_edited,
vertex.label.color="black",
vertex.label.cex=1+betweenness(peaky_network, weights = NA)/1000,
vertex.color = V(peaky_network)$cliques11,
margin=c(0,0,0,0) ,
asp=0,
layout=layout4,
main = "Members of cliques of Size 11 in the Network of Peaky Blinders")
```
### K-cores
First, we can examine coreness on the network level:
```{r}
coreness <- coreness(peaky_network)
table(coreness)
```
Let's visualise at the individual level
```{r}
plot.igraph(peaky_network,
edge.color="gray",
edge.curved=.1,
edge.width= 1+E(peaky_network)$weight/15,
vertex.size = degree(peaky_network)/3,
vertex.frame.color="#555555",
vertex.label = V(peaky_network)$name_edited,
vertex.label.color="black",
vertex.label.cex=1+betweenness(peaky_network, weights = NA)/1000,
vertex.color = hcl.colors(11, palette = "viridis")[as.factor(coreness(peaky_network))],
margin=c(0,0,0,0) ,
asp=0,
layout=layout4,
main = "Cores in the Peaky Blinders network")
legend(x = 0.9,
y = 0.3,
bty = "n",
legend = unique(as.factor(sort(coreness(peaky_network), decreasing = T))),
cex = 0.7,
fill = hcl.colors(11, palette = "viridis")[unique(as.factor(sort(coreness(peaky_network), decreasing = T)))],
title = "Cores",
title.cex = 1.2
)
```
### Blockmodelling & structural equivalence
We will try block-models with 2, 3, 4, 5 and 6 blocks.
The approach chosen is a sum of squares homogeneity block-modelling, and only "complete" blocks -- composed of all 1’s as much as possible -- are allowed.
```{r echo = T, results = 'hide'}
c2 <- optRandomParC(M=peaky_adj_mat, k=2, rep=10, approach="ss", blocks="com")
c3 <- optRandomParC(M=peaky_adj_mat, k=3, rep=10, approach="ss", blocks="com")
c4 <- optRandomParC(M=peaky_adj_mat, k=4, rep=10, approach="ss", blocks="com")
c5 <- optRandomParC(M=peaky_adj_mat, k=5, rep=10, approach="ss", blocks="com")
c6 <- optRandomParC(M=peaky_adj_mat, k=6, rep=10, approach="ss", blocks="com")
```
I can now plot the adjacency matrix with those three results of blockmodelling.
```{r}
plot(c2, main="Two Block Partition")
plot(c3, main="Three Block Partition")
plot(c4, main="Four Block Partition")
plot(c5, main="Five Block Partition")
plot(c6, main="Six Block Partition")
```
To facilitate understanding, it is possible to plot the network with colours depending on the different blocks.
```{r}
plot.igraph(peaky_network,
edge.color="gray",
edge.curved=.1,
edge.width= 1+E(peaky_network)$weight/15,
vertex.size = degree(peaky_network)/3,
vertex.frame.color="#555555",
vertex.label = V(peaky_network)$name_edited,
vertex.label.color="black",
vertex.label.cex=1+betweenness(peaky_network, weights = NA)/1500,
vertex.color = c3$best$best1$clu,
margin=c(0,0,0,0) ,
asp=0,
layout=layout4,
main = "Three block partition")
plot.igraph(peaky_network,
edge.color="gray",
edge.curved=.1,
edge.width= 1+E(peaky_network)$weight/15,
vertex.size = degree(peaky_network)/3,
vertex.frame.color="#555555",
vertex.label = V(peaky_network)$name_edited,
vertex.label.color="black",
vertex.label.cex=1+betweenness(peaky_network, weights = NA)/1500,
vertex.color = c4$best$best1$clu,
margin=c(0,0,0,0) ,
asp=0,
layout=layout4,
main = "Four block partition")
plot.igraph(peaky_network,
edge.color="gray",
edge.curved=.1,
edge.width= 1+E(peaky_network)$weight/15,
vertex.size = degree(peaky_network)/3,
vertex.frame.color="#555555",
vertex.label = V(peaky_network)$name_edited,
vertex.label.color="black",
vertex.label.cex=1+betweenness(peaky_network, weights = NA)/1500,
vertex.color = c5$best$best1$clu,
margin=c(0,0,0,0) ,
asp=0,
layout=layout4,
main = "Five block partition")
```
## Characteristics of the edges
### Global clustering coefficient
```{r}
transitivity(peaky_network, type="global")
```
### Local clustering coefficient
```{r}
cbind(V(peaky_network)$name, round(transitivity(peaky_network, type = "local"), digits = 2))
```
We can visualise the negative correlation between local clustering and betweenness:
```{r}
transitivity_peaky <- transitivity(peaky_network, type="local")
betweenness_peaky <- betweenness(peaky_network, weights = NA, normalized = TRUE)
colour_c5 <- factor(c5$best$best1$clu)
df <- data.frame(LocalClustering = transitivity_peaky,
Betweenness = betweenness_peaky,
Colour = colour_c5) |>
mutate(Betweenness_logged = if_else(Betweenness == 0, NA, log(Betweenness)))
cor_value <- round(cor(df$LocalClustering, df$Betweenness_logged, use = "complete.obs"), 2)
```
```{r warning=FALSE}
ggplot(df, aes(x = LocalClustering, y = Betweenness_logged)) +
geom_point(aes(colour = Colour), size = 3) +
geom_smooth(method = "lm", color = "blue", size = 0.5) +
labs(x = "Local Clustering", y = "Betweenness (logged)") +
annotate("text", x=0.6, y=-0.7, label = paste("Correlation:", cor_value), size = 6, colour = "#A9A9A9") +
ggrepel::geom_text_repel(aes(label = V(peaky_network)$name_edited), size = 4) +
theme_minimal()+
theme(
legend.position = "none",
panel.grid = element_blank(),
axis.title = element_text(size = 12)
)
```