ZeroMMT is compatible with Python 3.9, we did not test any other python versions.
ZeroMMT-600M | ZeroMMT-1.3B | ZeroMMT-3.3B
This package is intended to perform inference with the ZeroMMT model. ZeroMMT is a zero-shot multilingual multimodal machine translation system trained only on English text-image pairs. It starts from a pretrained NLLB (more info here) and adapts it using lightweight modules (adapters & visual projector) while keeping original weights frozen during training. It is trained using visually conditioned masked language modeling and KL divergence between original MT outputs and new MMT ones. ZeroMMT is available in 3 sizes: 600M, 1.3B and 3.3B. The largest model shows state-of-the-art performances on CoMMuTE, benchmark intended to evaluate abilities of multimodal translation systems to exploit image information to disambiguate the English sentence to be translated. ZeroMMT is multilingual and available for English-to-{Arabic,Chinese,Czech,German,French,Russian}.
If you use this package or like our work, please cite:
@misc{futeral2024zeroshotmultimodalmachinetranslation,
title={Towards Zero-Shot Multimodal Machine Translation},
author={Matthieu Futeral and Cordelia Schmid and Benoît Sagot and Rachel Bawden},
year={2024},
eprint={2407.13579},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2407.13579},
}
pip install zerommt
without cfg
import requests
from PIL import Image
import torch
from zerommt import create_model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = create_model(model_path="matthieufp/ZeroMMT-600M",
enable_cfg=False).to(device)
model.eval()
image = Image.open(
requests.get(
"http://images.cocodataset.org/val2017/000000002153.jpg", stream=True
).raw
)
src_text = "He's got a bat in his hands."
src_lang = "eng_Latn"
tgt_lang = "fra_Latn"
# Compute cross-entropy loss given translation
tgt_text = "Il a une batte dans ses mains."
with torch.inference_mode():
loss = model(imgs=[image],
src_text=[src_text],
src_lang=src_lang,
tgt_text=[tgt_text],
tgt_lang=tgt_lang,
output_loss=True)
print(loss)
# Generate translation with beam search
beam_size = 4
image2 = Image.open(
requests.get(
"https://zupimages.net/up/24/29/7r3s.jpg", stream=True
).raw
)
with torch.inference_mode():
generated = model.generate(imgs=[image, image2],
src_text=[src_text, src_text],
src_lang=src_lang,
tgt_lang=tgt_lang,
beam_size=beam_size)
translation = model.tokenizer.batch_decode(generated, skip_special_tokens=True)
print(translation)
with cfg (WARNING: enabling cfg will require approximately twice as much memory!)
import requests
from PIL import Image
import torch
from zerommt import create_model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = create_model(model_path="matthieufp/ZeroMMT-600M",
enable_cfg=True).to(device)
model.eval()
image = Image.open(
requests.get(
"http://images.cocodataset.org/val2017/000000002153.jpg", stream=True
).raw
)
src_text = "He's got a bat in his hands."
src_lang = "eng_Latn"
tgt_lang = "fra_Latn"
# Compute cross-entropy loss given translation
tgt_text = "Il a une batte dans ses mains."
cfg_value = 1.25
with torch.inference_mode():
loss = model(imgs=[image],
src_text=[src_text],
src_lang=src_lang,
tgt_text=[tgt_text],
tgt_lang=tgt_lang,
output_loss=True,
cfg_value=cfg_value)
print(loss)
# Generate translation with beam search and cfg
beam_size = 4
with torch.inference_mode():
generated = model.generate(imgs=[image],
src_text=[src_text],
src_lang=src_lang,
tgt_lang=tgt_lang,
beam_size=beam_size,
cfg_value=cfg_value)
translation = model.tokenizer.batch_decode(generated)[0]
print(translation)