forked from andrew-cr/jump-diffusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
684 lines (614 loc) · 20.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is licensed under a Creative Commons
# Attribution-NonCommercial-ShareAlike 4.0 International License.
# You should have received a copy of the license along with this
# work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/
"""Train diffusion-based generative model using the techniques described in the
paper "Elucidating the Design Space of Diffusion-Based Generative Models"."""
import glob
import json
import os
import re
import warnings
from pathlib import Path
import click
import torch
import wandb
import dnnlib
from torch_utils import distributed as dist
from training import training_loop
from training.dataset import datasets_to_kwargs, kwargs_gettable_from_dataset
from training.grad_conditioning import grad_conditioners_to_kwargs
from training.loss import losses_to_kwargs
from training.networks import networks_to_kwargs
from training.sampler import samplers_to_kwargs
warnings.filterwarnings(
"ignore", "Grad strides do not match bucket view strides"
) # False warning printed by PyTorch 1.12.
# ----------------------------------------------------------------------------
# Parse a comma separated list of numbers or ranges and return a list of ints.
# Example: '1,2,5-10' returns [1, 2, 5, 6, 7, 8, 9, 10]
def parse_int_list(s):
print("parse_int_list", s)
if isinstance(s, tuple):
return s
ranges = []
range_re = re.compile(r"^(\d+)-(\d+)$")
for p in s.split(","):
m = range_re.match(p)
if m:
ranges.extend(range(int(m.group(1)), int(m.group(2)) + 1))
else:
ranges.append(int(p))
return tuple(ranges)
def parse_float_list(s):
if isinstance(s, tuple):
return s
ranges = []
range_re = re.compile(r"^(\d+)-(\d+)$")
for p in s.split(","):
m = range_re.match(p)
if m:
ranges.extend(range(float(m.group(1)), float(m.group(2)) + 1))
else:
ranges.append(float(p))
return tuple(ranges)
def str2bool(s):
return "t" in s.lower()
# ----------------------------------------------------------------------------
added_names = set()
def add_specific_options(f, classes_to_kwargs):
for key in classes_to_kwargs.keys():
new_set = set()
for inner_tuple in classes_to_kwargs[key]:
new_set.add(
(
key.lower() + "_" + inner_tuple[0],
inner_tuple[1],
inner_tuple[2],
)
)
classes_to_kwargs[key] = new_set
class_specific_kwargs = set.union(*classes_to_kwargs.values())
for name, type_str, default in class_specific_kwargs:
assert not any(
c.isupper() for c in name
) # not allowed capital letters!
if name in added_names:
raise ValueError(
f"{name} parameter appears twice so will override one!!!"
)
else:
added_names.add(name)
f = click.option(
f"--{name}",
help=f"{name} for dataset",
type=eval(type_str),
default=default,
show_default=True,
)(f)
return f
def dataset_specific_options(f):
return add_specific_options(f, datasets_to_kwargs)
def loss_specific_options(f):
return add_specific_options(f, losses_to_kwargs)
def sampler_specific_options(f):
return add_specific_options(f, samplers_to_kwargs)
def grad_conditioning_specific_options(f):
return add_specific_options(f, grad_conditioners_to_kwargs)
def network_specific_options(f):
return add_specific_options(f, networks_to_kwargs)
@click.command()
@click.option(
"--exist",
help="List of 1s/0s to specify which tensors to use (i.e. to not marginalise).",
metavar="LIST",
type=parse_int_list,
default=None,
show_default=True,
) # TODO implement for any dataset
@click.option(
"--observed",
help="Which dataset tensors are observed",
metavar="LIST",
type=parse_int_list,
required=True,
)
# Main options.
@click.option(
"--outdir",
help="Where to save the results",
metavar="DIR",
type=str,
default="training-runs",
show_default=True,
)
@click.option(
"--data_class",
help="Dataset class to use",
type=click.Choice(datasets_to_kwargs.keys()),
required=True,
)
@click.option(
"--precond",
help="Preconditioning",
type=click.Choice(["edm", "eps", "x0", "none"]),
default="eps",
show_default=True,
)
@click.option(
"--loss_class",
help="Loss class to use",
type=click.Choice(losses_to_kwargs.keys()),
required=True,
)
@click.option(
"--just_visualize",
help="Whether to just visualize the dataset.",
metavar="BOOL",
type=bool,
default=False,
show_default=True,
)
@click.option(
"--noise_embed",
help="How to embed timestep for the model.",
metavar="STR",
type=click.Choice(["ts", "ts*1000", "edm"]),
default="ts*1000",
show_default=True,
)
@click.option(
"--sampler_class",
help="Sampler class to use",
metavar="STR",
type=click.Choice(samplers_to_kwargs.keys()),
required=True,
)
@click.option(
"--grad_conditioner_class",
help="Gradient conditioning class to use",
metavar="STR",
type=click.Choice(grad_conditioners_to_kwargs.keys()),
default="EDM",
show_default=True,
)
@click.option(
"--distributed",
help="Whether to use distributed training",
metavar="BOOL",
type=bool,
default=False,
show_default=True,
)
# @click.option('--noise_mult', help='Multipliers for amount of noise added to each tensor.', metavar='LIST', type=parse_float_list, default=(1.,))
# Architecture options.
# @click.option('--arch', help='Network architecture', type=click.Choice(['concatunet', 'gsdm', 'test', 'egnn', 'egnn_cont', 'egnn_jump', 'mol_mlp', 'graph_transformer']), default='concatunet', show_default=True)
@click.option(
"--network_class",
help="Network architecture",
type=click.Choice(networks_to_kwargs.keys()),
required=True,
)
# @click.option('--pred_x0', help='List describing whether to predict x0 for each tensor.', metavar='LIST', type=parse_int_list, default=(0,))
# @click.option('--rate_use_x0_pred', help = 'Parameterize rate network through x0 dim prediction', metavar='BOOL', type=bool, default=True, show_default=True)
# @click.option('--softmax_onehot', help='Whether to use softmax on model output for onehots. Only makes sense with --pred_x0 on for the onehots.', metavar='BOOL', type=bool, default=False, show_default=True)
# @click.option('--channel_mult_emb', help='Channel multiplier for vector embeddings.', metavar='INT', type=int, default=4, show_default=True)
# @click.option('--channel_mult_noise', help='Channel multiplier for initial noise (and label+vector) embeddings.', metavar='INT', type=int, default=4, show_default=True)
# @click.option('--sparse_attention', help='Whether to use sparse attention', metavar='BOOL', type=bool, default=True, show_default=True)
# @click.option('--model_channels', help='number of channels in transformer', metavar='INT', type=int, default=128)
# @click.option('--num_blocks', help='number of blocks in transformer', metavar='INT', type=int, default=4)
@dataset_specific_options
@loss_specific_options
@sampler_specific_options
@grad_conditioning_specific_options
@network_specific_options
# Hyperparameters.
@click.option(
"--duration",
help="Training duration",
metavar="MIMG",
type=click.FloatRange(min=0, min_open=True),
default=200,
show_default=True,
)
@click.option(
"--batch",
help="Total batch size",
metavar="INT",
type=click.IntRange(min=1),
default=512,
show_default=True,
)
@click.option(
"--batch-gpu",
help="Limit batch size per GPU",
metavar="INT",
type=click.IntRange(min=1),
)
@click.option(
"--cbase",
help="Channel multiplier [default: varies]",
metavar="INT",
type=int,
)
@click.option(
"--cres",
help="Channels per resolution [default: varies]",
metavar="LIST",
type=parse_int_list,
)
@click.option(
"--lr",
help="Learning rate",
metavar="FLOAT",
type=click.FloatRange(min=0, min_open=True),
default=1e-3,
show_default=True,
)
@click.option(
"--ema",
help="EMA half-life",
metavar="MIMG",
type=click.FloatRange(min=0),
default=0.5,
show_default=True,
)
@click.option(
"--dropout",
help="Dropout probability",
metavar="FLOAT",
type=click.FloatRange(min=0, max=1),
default=0.13,
show_default=True,
)
@click.option(
"--augment",
help="Augment probability",
metavar="FLOAT",
type=click.FloatRange(min=0, max=1),
default=0.12,
show_default=True,
)
# Performance-related.
@click.option(
"--fp16",
help="Enable mixed-precision training",
metavar="BOOL",
type=bool,
default=False,
show_default=True,
)
@click.option(
"--ls",
help="Loss scaling",
metavar="FLOAT",
type=click.FloatRange(min=0, min_open=True),
default=1,
show_default=True,
)
@click.option(
"--bench",
help="Enable cuDNN benchmarking",
metavar="BOOL",
type=bool,
default=True,
show_default=True,
)
@click.option(
"--workers",
help="DataLoader worker processes",
metavar="INT",
type=click.IntRange(min=0),
default=1,
show_default=True,
)
# I/O-related.
@click.option(
"--desc",
help="String to include in result dir name",
metavar="STR",
type=str,
)
@click.option(
"--nosubdir", help="Do not create a subdirectory for results", is_flag=True
)
@click.option(
"--tick",
help="How often to print progress",
metavar="KIMG",
type=click.IntRange(min=1),
default=50,
show_default=True,
)
@click.option(
"--snap",
help="How often to save snapshots",
metavar="TICKS",
type=click.IntRange(min=1),
default=50,
show_default=True,
)
@click.option(
"--dump",
help="How often to dump state",
metavar="TICKS",
type=click.IntRange(min=1),
default=500,
show_default=True,
)
@click.option(
"--sample",
help="How often to log images",
metavar="TICKS",
type=click.IntRange(min=1),
default=50,
show_default=True,
)
@click.option(
"--seed", help="Random seed [default: random]", metavar="INT", type=int
)
@click.option(
"--transfer",
help="Transfer learning from network pickle",
metavar="PKL|URL",
type=str,
)
@click.option(
"--resume",
help="Resume from previous training state",
metavar="PT",
type=str,
)
@click.option(
"--resume_latest_from_resume_id",
help="Resume from the latest training state in the directoy given by resume_id",
is_flag=True,
)
@click.option(
"-n", "--dry-run", help="Print training options and exit", is_flag=True
)
@click.option("--device", type=str, default="cuda")
# wandb
@click.option(
"--wandb_dir",
help="Where to save the wandb results",
metavar="DIR",
type=str,
default=".",
)
@click.option(
"--resume_id",
help="Wandb id to resume from",
metavar="ID",
type=str,
default=None,
)
@click.option(
"--set_wandb_id",
help="Optional way to set the wandb id",
metavar="ID",
type=str,
default=None,
)
def main(**kwargs):
"""Train diffusion-based generative model using the techniques described in the
paper "Elucidating the Design Space of Diffusion-Based Generative Models".
Examples:
\b
# Train DDPM++ model for class-conditional CIFAR-10 using 8 GPUs
torchrun --standalone --nproc_per_node=8 train.py --outdir=training-runs \\
--data=datasets/cifar10-32x32.zip --cond=1 --arch=ddpmpp
"""
opts = dnnlib.EasyDict(kwargs)
# torch.multiprocessing.set_start_method('spawn')
torch.multiprocessing.set_start_method("fork")
if opts.distributed:
dist.init()
# Initialize config dict.
c = dnnlib.EasyDict()
dataset_class_name = "training.dataset." + opts.data_class
c.dataset_kwargs = dnnlib.EasyDict(class_name=dataset_class_name)
for kwarg_name, _, _ in datasets_to_kwargs[opts.data_class]:
new_kwarg_name = "_".join(kwarg_name.split("_")[1:])
c.dataset_kwargs[new_kwarg_name] = opts[kwarg_name]
c.distributed = opts.distributed
c.device = opts.device
if opts.workers == 0:
print("WARNING using 0 workers which was previously disallowed by EDM")
c.data_loader_kwargs = dnnlib.EasyDict(
pin_memory=True, num_workers=opts.workers, prefetch_factor=2
)
loss_class_name = "training.loss." + opts.loss_class
c.loss_kwargs = dnnlib.EasyDict(class_name=loss_class_name)
for kwarg_name, _, _ in losses_to_kwargs[opts.loss_class]:
# remove the class name from the start of the kwarg name
# safe to do now since we have selected only one from the options
new_kwarg_name = "_".join(kwarg_name.split("_")[1:])
c.loss_kwargs[new_kwarg_name] = opts[kwarg_name]
c.optimizer_kwargs = dnnlib.EasyDict(
class_name="torch.optim.Adam", lr=opts.lr, betas=[0.9, 0.999], eps=1e-8
)
c.just_visualize = opts.just_visualize
# Validate dataset options.
try:
pass
dataset_name = opts.data_class
# dataset_obj = dnnlib.util.construct_class_by_name(**c.dataset_kwargs)
# dataset_name = dataset_obj.name
# for kwarg_name, getter in kwargs_gettable_from_dataset[opts.data_class]:
# # sets e.g. max_size and resolution for image datasets
# setattr(c.dataset_kwargs, kwarg_name, getter(dataset_obj)) # sets
# del dataset_obj # conserve memory
except IOError as err:
raise click.ClickException(f"--data: {err}")
c.structure_kwargs = dnnlib.EasyDict(
exist=opts.exist, observed=opts.observed
)
sampler_class_name = "training.sampler." + opts.sampler_class
c.sampler_kwargs = dnnlib.EasyDict(class_name=sampler_class_name)
for kwarg_name, _, _ in samplers_to_kwargs[opts.sampler_class]:
new_kwarg_name = "_".join(kwarg_name.split("_")[1:])
c.sampler_kwargs[new_kwarg_name] = opts[kwarg_name]
grad_conditioner_class_name = (
"training.grad_conditioning." + opts.grad_conditioner_class
)
c.grad_conditioner_kwargs = dnnlib.EasyDict(
class_name=grad_conditioner_class_name
)
for kwarg_name, _, _ in grad_conditioners_to_kwargs[
opts.grad_conditioner_class
]:
new_kwarg_name = "_".join(kwarg_name.split("_")[1:])
c.grad_conditioner_kwargs[new_kwarg_name] = opts[kwarg_name]
# Network architecture.
c.network_kwargs = dnnlib.EasyDict(model_type=opts.network_class)
for kwarg_name, _, _ in networks_to_kwargs[opts.network_class]:
new_kwarg_name = "_".join(kwarg_name.split("_")[1:])
c.network_kwargs[new_kwarg_name] = opts[kwarg_name]
# Preconditioning & loss function.
c.network_kwargs.update(noise_embed=opts.noise_embed, use_fp16=opts.fp16)
if opts.precond == "edm":
c.network_kwargs.class_name = "training.networks.EDMPrecond"
elif opts.precond == "eps":
c.network_kwargs.class_name = "training.networks.EpsilonPrecond"
elif opts.precond == "x0":
c.network_kwargs.class_name = "training.networks.X0Precond"
elif opts.precond == "none":
c.network_kwargs.class_name = "training.networks.NonePrecond"
else:
raise NotImplementedError(opts.precond)
# Network options.
if opts.cbase is not None:
c.network_kwargs.model_channels = opts.cbase
if opts.cres is not None:
c.network_kwargs.channel_mult = opts.cres
if opts.augment:
c.augment_kwargs = dnnlib.EasyDict(
class_name="training.augment.AugmentPipe", p=opts.augment
)
c.augment_kwargs.update(
xflip=1e8,
yflip=1,
scale=1,
rotate_frac=1,
aniso=1,
translate_frac=1,
)
c.network_kwargs.augment_dim = 9
# Training options.
c.total_kimg = max(int(opts.duration * 1000), 1)
c.ema_halflife_kimg = int(opts.ema * 1000)
c.update(batch_size=opts.batch, batch_gpu=opts.batch_gpu)
c.update(loss_scaling=opts.ls, cudnn_benchmark=opts.bench)
c.update(
kimg_per_tick=opts.tick,
snapshot_ticks=opts.snap,
state_dump_ticks=opts.dump,
log_img_ticks=opts.sample,
)
# Random seed.
if opts.seed is not None:
c.seed = opts.seed
else:
seed = torch.randint(1 << 31, size=[], device=c.device)
if opts.distributed:
torch.distributed.broadcast(seed, src=0)
c.seed = int(seed)
dist.print0("seed: ", c.seed)
# Transfer learning and resume.
if opts.resume_latest_from_resume_id:
assert opts.resume_id is not None
training_states = glob.glob(
Path(opts.outdir)
.joinpath(str(opts.resume_id))
.joinpath("training-state-*.pt")
.as_posix()
)
training_states = sorted(training_states)
opts.resume = training_states[-1]
dist.print0(f"Resuming from {opts.resume}")
if opts.transfer is not None:
if opts.resume is not None:
raise click.ClickException(
"--transfer and --resume cannot be specified at the same time"
)
c.resume_pkl = opts.transfer
c.ema_rampup_ratio = None
elif opts.resume is not None:
match = re.fullmatch(
r"training-state-(\d+).pt", os.path.basename(opts.resume)
)
if not match or not os.path.isfile(opts.resume):
raise click.ClickException(
"--resume must point to training-state-*.pt from a previous training run"
)
c.resume_pkl = os.path.join(
os.path.dirname(opts.resume),
f"network-snapshot-{match.group(1)}.pkl",
)
c.resume_kimg = int(match.group(1))
c.resume_state_dump = opts.resume
# Initialize wandb
if dist.get_rank() == 0:
wandb_id = None
if opts.resume_id is not None:
wandb_id = opts.resume_id
if opts.set_wandb_id is not None:
wandb_id = opts.set_wandb_id
if opts.resume_id is not None and opts.set_wandb_id is not None:
assert opts.resume_id == opts.set_wandb_id
wandb.init(
entity=os.environ["WANDB_ENTITY"],
project=os.environ["WANDB_PROJECT"],
config=c,
dir=opts.wandb_dir,
id=wandb_id,
resume=opts.resume_id is not None,
)
# Description string.
cond_str = "cond-" + "".join(map(str, opts.observed))
dtype_str = "fp16" if c.network_kwargs.use_fp16 else "fp32"
desc = f"{dataset_name:s}-{cond_str:s}-{opts.network_class:s}-edm-gpus{dist.get_world_size():d}-batch{c.batch_size:d}-{dtype_str:s}"
if opts.desc is not None:
desc += f"-{opts.desc}"
# Pick output directory.
if dist.get_rank() != 0:
c.run_dir = None
elif opts.nosubdir:
c.run_dir = opts.outdir
else:
prev_run_dirs = []
if os.path.isdir(opts.outdir):
prev_run_dirs = [
x
for x in os.listdir(opts.outdir)
if os.path.isdir(os.path.join(opts.outdir, x))
]
prev_run_ids = [re.match(r"^\d+", x) for x in prev_run_dirs]
prev_run_ids = [int(x.group()) for x in prev_run_ids if x is not None]
cur_run_id = max(prev_run_ids, default=-1) + 1
c.run_dir = os.path.join(opts.outdir, f"{wandb.run.id}")
# assert not os.path.exists(c.run_dir)
# Dry run?
if opts.dry_run:
dist.print0("Dry run; exiting.")
return
# Create output directory.
dist.print0("Creating output directory...")
if dist.get_rank() == 0:
os.makedirs(c.run_dir, exist_ok=True)
with open(os.path.join(c.run_dir, "training_options.json"), "wt") as f:
json.dump(c, f, indent=2)
dnnlib.util.Logger(
file_name=os.path.join(c.run_dir, "log.txt"),
file_mode="a",
should_flush=True,
)
# Train.
training_loop.training_loop(**c)
# ----------------------------------------------------------------------------
if __name__ == "__main__":
main()
# ----------------------------------------------------------------------------