Skip to content

Mattias421/tdmolflow

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Work in progress

  • Implement OT-Flow matching
  • Implement trans-dimensional flow matching
  • Replace OHE with trainable embeddings
  • EQ-GAT
  • Cross-attention
  • Multimodal conditioning

Notebooks

Notebooks are provided in the notebooks folder for sampling and visualizing the results for unconditional generation, conditional generation through diffusion guidance and finally for performing interpolations.

Pre-trained models are provided in the models folder.

Repository

This repository is built on top the open source repo https://github.com/NVlabs/edm and https://github.com/andrew-cr/jump-diffusion

Training

Example training command

python train.py --workers 8 --sample 50 --batch 64 --lr 0.00003 --ema 0.5 \
    --observed 0,0,0,1,1,1,1,1,1 --exist 1,1,1,1,1,1,1,1,1 --snap 25 --dump 25 \
    --precond eps --data_class QM9Dataset --qm9dataset_shuffle_node_ordering True \
    --qm9dataset_condition_on_alpha False --qm9dataset_only_second_half False \
    --qm9dataset_atom_type_norm 0.25 --loss_class JumpLossFinalDim \
    --jumplossfinaldim_rate_function_name step --jumplossfinaldim_rate_cut_t 0.1 \
    --jumplossfinaldim_mean_or_sum_over_dim mean --jumplossfinaldim_noise_schedule_name vp_sde \
    --jumplossfinaldim_x0_logit_ce_loss_weight 1.0 --jumplossfinaldim_nearest_atom_pred True \
    --sampler_class JumpSampler --jumpsampler_sample_near_atom True --network_class EGNNMultiHeadJump \
    --egnnmultiheadjump_detach_last_layer True --egnnmultiheadjump_rate_use_x0_pred True \
    --egnnmultiheadjump_n_attn_blocks 8 --egnnmultiheadjump_n_heads 8 \
    --egnnmultiheadjump_transformer_dim 128 --grad_conditioner_class MoleculeJump \
    --moleculejump_grad_norm_clip 1.0 --wandb_dir /path/to/output \
    --outdir /path/to/output/training-runs

Environment

pytorch
rdkit
scipy
click
wandb

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 94.4%
  • Jupyter Notebook 4.3%
  • Shell 1.3%