DeepLabV3Plus (ECCV'2018)
@inproceedings{chen2018encoder,
title={Encoder-decoder with atrous separable convolution for semantic image segmentation},
author={Chen, Liang-Chieh and Zhu, Yukun and Papandreou, George and Schroff, Florian and Adam, Hartwig},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={801--818},
year={2018}
}
Backbone | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|
R-50-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 77.43% | cfg | model | log |
R-50-D16 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 76.92% | cfg | model | log |
R-101-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 79.19% | cfg | model | log |
R-101-D16 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 78.31% | cfg | model | log |
Backbone | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|
R-50-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 44.51% | cfg | model | log |
R-50-D16 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 43.21% | cfg | model | log |
R-101-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 45.72% | cfg | model | log |
R-101-D16 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 45.22% | cfg | model | log |
Backbone | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|
R-50-D8 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 80.38% | cfg | model | log |
R-50-D16 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 79.73% | cfg | model | log |
R-101-D8 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 81.09% | cfg | model | log |
R-101-D16 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 80.20% | cfg | model | log |
You can also download the model weights from following sources:
- BaiduNetdisk: https://pan.baidu.com/s/1gD-NJJWOtaHCtB0qHE79rA with access code s757