Skip to content

SSSegmentation: An Open Source Supervised Semantic Segmentation Toolbox Based on PyTorch.

License

Notifications You must be signed in to change notification settings

MedivhXZ/sssegmentation

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation


docs PyPI - Python Version PyPI license PyPI - Downloads PyPI - Downloads issue resolution open issues

Documents: https://sssegmentation.readthedocs.io/en/latest/

Introduction

SSSegmentation is an open source supervised semantic segmentation toolbox based on PyTorch. You can star this repository to keep track of the project if it's helpful for you, thank you for your support.

Major Features

  • High Performance

    The performance of re-implemented segmentation algorithms is better than or comparable to other codebases.

  • Modular Design and Unified Benchmark

    Various segmentation methods are unified into several specific modules. Benefiting from this design, SSSegmentation can integrate a great deal of popular and contemporary semantic segmentation frameworks and then, train and test them on unified benchmarks.

  • Fewer Dependencies

    SSSegmenation tries its best to avoid introducing more dependencies when reproducing novel semantic segmentation approaches.

Benchmark and Model Zoo

Supported Backbones

Backbone Model Zoo Paper Link Code Snippet
UNet Click MICCAI 2015 Click
BEiT Click ICLR 2022 Click
Twins Click NeurIPS 2021 Click
CGNet Click TIP 2020 Click
HRNet Click CVPR 2019 Click
ERFNet Click T-ITS 2017 Click
ResNet Click CVPR 2016 Click
ResNeSt Click ArXiv 2020 Click
ConvNeXt Click CVPR 2022 Click
FastSCNN Click ArXiv 2019 Click
BiSeNetV1 Click ECCV 2018 Click
BiSeNetV2 Click IJCV 2021 Click
MobileNetV2 Click CVPR 2018 Click
MobileNetV3 Click ICCV 2019 Click
SwinTransformer Click ICCV 2021 Click
VisionTransformer Click IClR 2021 Click

Supported Segmentors

Segmentor Model Zoo Paper Link Code Snippet
FCN Click TPAMI 2017 Click
CE2P Click AAAI 2019 Click
SETR Click CVPR 2021 Click
ISNet Click ICCV 2021 Click
ICNet Click ECCV 2018 Click
CCNet Click ICCV 2019 Click
DANet Click CVPR 2019 Click
DMNet Click ICCV 2019 Click
GCNet Click TPAMI 2020 Click
ISANet Click IJCV 2021 Click
EncNet Click CVPR 2018 Click
OCRNet Click ECCV 2020 Click
DNLNet Click ECCV 2020 Click
ANNNet Click ICCV 2019 Click
EMANet Click ICCV 2019 Click
PSPNet Click CVPR 2017 Click
PSANet Click ECCV 2018 Click
APCNet Click CVPR 2019 Click
FastFCN Click ArXiv 2019 Click
UPerNet Click ECCV 2018 Click
PointRend Click CVPR 2020 Click
Deeplabv3 Click ArXiv 2017 Click
Segformer Click NeurIPS 2021 Click
MaskFormer Click NeurIPS 2021 Click
SemanticFPN Click CVPR 2019 Click
NonLocalNet Click CVPR 2018 Click
Deeplabv3Plus Click ECCV 2018 Click
MemoryNet-MCIBI Click ICCV 2021 Click
MemoryNet-MCIBI++ Click TPAMI 2022 Click
Mixed Precision (FP16) Training Click ArXiv 2017 Click

Supported Datasets

Dataset Project Link Paper Link Code Snippet
LIP Click CVPR 2017 Click
ATR Click ICCV 2015 Click
HRF Click Int J Biomed Sci 2013 Click
CIHP Click ECCV 2018 Click
VSPW Click CVPR 2021 Click
DRIVE Click TMI 2004 Click
STARE Click TMI 2000 Click
ADE20k Click CVPR 2017 Click
MS COCO Click ECCV 2014 Click
MHPv1&v2 Click ArXiv 2017 Click
CHASE DB1 Click TBME 2012 Click
CityScapes Click CVPR 2016 Click
Supervisely Click Website Release 2022 Click
PASCAL VOC Click IJCV 2010 Click
SBUShadow Click ECCV 2016 Click
Dark Zurich Click ICCV 2019 Click
COCOStuff10k Click CVPR 2018 Click
COCOStuff164k Click CVPR 2018 Click
Pascal Context Click CVPR 2014 Click
Nighttime Driving Click ITSC 2018 Click

Citation

If you use this framework in your research, please cite this project:

@misc{ssseg2020,
    author = {Zhenchao Jin},
    title = {SSSegmentation: An Open Source Supervised Semantic Segmentation Toolbox Based on PyTorch},
    year = {2020},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/SegmentationBLWX/sssegmentation}},
}

@inproceedings{jin2021isnet,
    title={ISNet: Integrate Image-Level and Semantic-Level Context for Semantic Segmentation},
    author={Jin, Zhenchao and Liu, Bin and Chu, Qi and Yu, Nenghai},
    booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
    pages={7189--7198},
    year={2021}
}

@inproceedings{jin2021mining,
    title={Mining Contextual Information Beyond Image for Semantic Segmentation},
    author={Jin, Zhenchao and Gong, Tao and Yu, Dongdong and Chu, Qi and Wang, Jian and Wang, Changhu and Shao, Jie},
    booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
    pages={7231--7241},
    year={2021}
}

@article{jin2022mcibi++,
    title={MCIBI++: Soft Mining Contextual Information Beyond Image for Semantic Segmentation},
    author={Jin, Zhenchao and Yu, Dongdong and Yuan, Zehuan and Yu, Lequan},
    journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
    year={2022},
    publisher={IEEE}
}

References

About

SSSegmentation: An Open Source Supervised Semantic Segmentation Toolbox Based on PyTorch.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%