forked from SegmentationBLWX/sssegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvspw.py
74 lines (72 loc) · 4 KB
/
vspw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
'''
Function:
Implementation of VSPWDataset
Author:
Zhenchao Jin
'''
import os
import random
from .base import BaseDataset
'''VSPWDataset'''
class VSPWDataset(BaseDataset):
num_classes = 124
classnames = [
'wall', 'ceiling', 'door', 'stair', 'ladder', 'escalator', 'Playground_slide', 'handrail_or_fence', 'window',
'rail', 'goal', 'pillar', 'pole', 'floor', 'ground', 'grass', 'sand', 'athletic_field', 'road', 'path', 'crosswalk',
'building', 'house', 'bridge', 'tower', 'windmill', 'well_or_well_lid', 'other_construction', 'sky', 'mountain', 'stone',
'wood', 'ice', 'snowfield', 'grandstand', 'sea', 'river', 'lake', 'waterfall', 'water', 'billboard_or_Bulletin_Board',
'sculpture', 'pipeline', 'flag', 'parasol_or_umbrella', 'cushion_or_carpet', 'tent', 'roadblock', 'car', 'bus', 'truck',
'bicycle', 'motorcycle', 'wheeled_machine', 'ship_or_boat', 'raft', 'airplane', 'tyre', 'traffic_light', 'lamp', 'person',
'cat', 'dog', 'horse', 'cattle', 'other_animal', 'tree', 'flower', 'other_plant', 'toy', 'ball_net', 'backboard', 'skateboard',
'bat', 'ball', 'cupboard_or_showcase_or_storage_rack', 'box', 'traveling_case_or_trolley_case', 'basket', 'bag_or_package',
'trash_can', 'cage', 'plate', 'tub_or_bowl_or_pot', 'bottle_or_cup', 'barrel', 'fishbowl', 'bed', 'pillow', 'table_or_desk',
'chair_or_seat', 'bench', 'sofa', 'shelf', 'bathtub', 'gun', 'commode', 'roaster', 'other_machine', 'refrigerator', 'washing_machine',
'Microwave_oven', 'fan', 'curtain', 'textiles', 'clothes', 'painting_or_poster', 'mirror', 'flower_pot_or_vase', 'clock', 'book', 'tool',
'blackboard', 'tissue', 'screen_or_television', 'computer', 'printer', 'Mobile_phone', 'keyboard', 'other_electronic_product', 'fruit',
'food', 'instrument', 'train'
]
palette = BaseDataset.randompalette(num_classes)
clsid2label = {0: 255, 254: 255}
for i in range(1, num_classes+1): clsid2label[i] = i - 1
assert num_classes == len(classnames) and num_classes == len(palette)
def __init__(self, mode, logger_handle, dataset_cfg):
super(VSPWDataset, self).__init__(mode=mode, logger_handle=logger_handle, dataset_cfg=dataset_cfg)
# obtain the dirs
rootdir = dataset_cfg['rootdir']
self.image_dir = os.path.join(rootdir, 'data')
self.ann_dir = os.path.join(rootdir, 'data')
# obatin imageids
self.imageids, self.annids = [], []
with open(os.path.join(rootdir, dataset_cfg['set']+'.txt')) as fp:
dirnames = fp.readlines()
for dirname in dirnames:
dirname = dirname.strip()
if not dirname: continue
if mode == 'TRAIN':
self.imageids.append(dirname)
else:
for imagename in os.listdir(os.path.join(self.image_dir, dirname, 'origin')):
imageid = f'{dirname}/origin/{imagename}'
annid = f'{dirname}/mask/{imagename.replace(".jpg", ".png")}'
self.imageids.append(imageid)
self.annids.append(annid)
'''getitem'''
def __getitem__(self, index):
# imageid
imageid = self.imageids[index % len(self.imageids)]
# read sample_meta
if self.mode == 'TRAIN':
imagedir = os.path.join(self.image_dir, imageid, 'origin')
imagename = random.choice(os.listdir(imagedir))
imagepath = os.path.join(imagedir, imagename)
annpath = os.path.join(self.ann_dir, imageid, f'mask/{imagename.replace(".jpg", ".png")}')
else:
imagepath = os.path.join(self.image_dir, imageid)
annpath = os.path.join(self.ann_dir, self.annids[index % len(self.imageids)])
sample_meta = self.read(imagepath, annpath)
# add image id
sample_meta.update({'id': imageid})
# synctransforms
sample_meta = self.synctransforms(sample_meta)
# return
return sample_meta