Skip to content

Latest commit

 

History

History
213 lines (135 loc) · 18.9 KB

Extended-results.md

File metadata and controls

213 lines (135 loc) · 18.9 KB

Extended results from the paper

Falsification Rate Avg. Total Time (s) Avg. Falsification Time (s) Average Restarts Images with Counterexamples
Property 1: nearest lanes confidence 17% 222.6 142.8 88.2 4
Property 2: last y-values of nearest lanes 47% 123.6 44.6 60.3 6
Property 3: lead car confidence 58% 197.4 46.5 46.5 6

The above results show average falsification performance for ten images within epsilon=10. The distance metric determining epsilon was computed using L-infinity, meaning that the distance was calculated according to the maximum difference of any value in the generated input from the original input.

Original Input Images

Original images were chosen for the variety of the environment shown in the input imageset and the interpretability and stability of the network output. Each imageset is comprised of two consecutive images, Image 0 and Image 1, collected by an onboard camera during "normal" driving on highway and surface roads. These two images are reordered into a composite tensor to be fed to the supercombo network as one input. The original imagesets are shown with their corresponding output from the network. The other 3 inputs were given default values. Refer to property definitions for default values. To download this dataset for yourself, refer to the dataset README.

Imageset 005

Image 0 Image 1 Output
Imageset 005-0 Imageset 005-1 Imageset 005 plot

Imageset 102

Image 0 Image 1 Output
Imageset 102-0 Imageset 102-1 Imageset 102 plot

Imageset 104

Image 0 Image 1 Output
Imageset 104-0 Imageset 104-1 Imageset 104 plot

Imageset 199

Image 0 Image 1 Output
Imageset 199-0 Imageset 199-1 Imageset 199 plot

Imageset 314

Image 0 Image 1 Output
Imageset 314-0 Imageset 314-1 Imageset 314 plot

Imageset 390

Image 0 Image 1 Output
Imageset 390-0 Imageset 390-1 Imageset 390 plot

Imageset 448

Image 0 Image 1 Output
Imageset 448-0 Imageset 448-1 Imageset 448 plot

Imageset 475

Image 0 Image 1 Output
Imageset 475-0 Imageset 475-1 Imageset 475 plot

Imageset 597

Image 0 Image 1 Output
Imageset 597-0 Imageset 597-1 Imageset 597 plot

Imageset 680

Image 0 Image 1 Output
Imageset 680-0 Imageset 680-1 Imageset 680 plot

Baseline Input Images

The baseline images were generated by sampling noise from a Gaussian distribution and applying them to the original input images. Baseline images with an L-infinity distance of 10 from the original images were included in this study. Just like the original images, the baseline Image 0 and Image 1 are preprocessed into a single composite tensor before being passed to the network. The purpose of the baseline is to determine the susceptibility of the network to untargeted changes in the image inputs. As displayed in the baseline images below, the change in output compared to the original image inputs is minimal. The changes in output do not violate the limits given in the property definitions.

Imageset 005

Image 0 Image 1 Output
Imageset 005-0 baseline Imageset 005-1 baseline Imageset 005 baseline plot

Imageset 102

Image 0 Image 1 Output
Imageset 102-0 baseline Imageset 102-1 baseline Imageset 102 baseline plot

Imageset 104

Image 0 Image 1 Output
Imageset 104-0 baseline Imageset 104-1 baseline Imageset 104 baseline plot

Imageset 199

Image 0 Image 1 Output
Imageset 199-0 baseline Imageset 104-1 baseline Imageset 199 baseline plot

Imageset 314

Image 0 Image 1 Output
Imageset 314-0 baseline Imageset 314-1 baseline Imageset 314 baseline plot

Imageset 390

Image 0 Image 1 Output
Imageset 390-0 baseline Imageset 390-1 baseline Imageset 390 baseline plot

Imageset 448

Image 0 Image 1 Output
Imageset 448-0 baseline Imageset 448-1 baseline Imageset 448 baseline plot

Imageset 475

Image 0 Image 1 Output
Imageset 475-0 baseline Imageset 475-1 baseline Imageset 475 baseline plot

Imageset 597

Image 0 Image 1 Output
Imageset 597-0 baseline Imageset 597-1 baseline Imageset 597 baseline plot

Imageset 680

Image 0 Image 1 Output
Imageset 680-0 baseline Imageset 680-1 baseline Imageset 680 baseline plot

Counterexamples for Property 1

Imageset 005 Imageset 102 Imageset 104 Imageset 199 Imageset 314
Original Image 0 Imageset 005-0 Imageset 102-0 Imageset 104-0 Imageset 199-0 Imageset 314-0
Counterexample Image 0 N/A N/A
Output N/A N/A
Imageset 390 Imageset 448 Imageset 475 Imageset 597 Imageset 680
Original Image 0 Imageset 390-0 Imageset 448-0 Imageset 475-0 Imageset 597-0 Imageset 680-0
Counterexample Image 0 N/A N/A N/A
Output N/A N/A N/A

Counterexamples for Property 2

Imageset 005 Imageset 102 Imageset 104 Imageset 199 Imageset 314
Original Image 0 Imageset 005-0 Imageset 102-0 Imageset 104-0 Imageset 199-0 Imageset 314-0
Counterexample Image 0 N/A N/A
Output N/A N/A
Imageset 390 Imageset 448 Imageset 475 Imageset 597 Imageset 680
Original Image 0 Imageset 390-0 Imageset 448-0 Imageset 475-0 Imageset 597-0 Imageset 680-0
Counterexample Image 0 N/A N/A
Output N/A N/A

Counterexamples for Property 3

Imageset 005 Imageset 102 Imageset 104 Imageset 199 Imageset 314
Original Image 0 Imageset 005-0 Imageset 102-0 Imageset 104-0 Imageset 199-0 Imageset 314-0
Counterexample Image 0
Output
Imageset 390 Imageset 448 Imageset 475 Imageset 597 Imageset 680
Original Image 0 Imageset 390-0 Imageset 448-0 Imageset 475-0 Imageset 597-0 Imageset 680-0
Counterexample Image 0 N/A N/A N/A N/A
Output N/A N/A N/A N/A