-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdecsol.f
987 lines (985 loc) · 30 KB
/
decsol.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
SUBROUTINE DEC (N, NDIM, A, IP, IER)
C VERSION REAL DOUBLE PRECISION
INTEGER N,NDIM,IP,IER,NM1,K,KP1,M,I,J
DOUBLE PRECISION A,T
DIMENSION A(NDIM,N), IP(N)
C-----------------------------------------------------------------------
C MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION.
C INPUT..
C N = ORDER OF MATRIX.
C NDIM = DECLARED DIMENSION OF ARRAY A .
C A = MATRIX TO BE TRIANGULARIZED.
C OUTPUT..
C A(I,J), I.LE.J = UPPER TRIANGULAR FACTOR, U .
C A(I,J), I.GT.J = MULTIPLIERS = LOWER TRIANGULAR FACTOR, I - L.
C IP(K), K.LT.N = INDEX OF K-TH PIVOT ROW.
C IP(N) = (-1)**(NUMBER OF INTERCHANGES) OR O .
C IER = 0 IF MATRIX A IS NONSINGULAR, OR K IF FOUND TO BE
C SINGULAR AT STAGE K.
C USE SOL TO OBTAIN SOLUTION OF LINEAR SYSTEM.
C DETERM(A) = IP(N)*A(1,1)*A(2,2)*...*A(N,N).
C IF IP(N)=O, A IS SINGULAR, SOL WILL DIVIDE BY ZERO.
C
C REFERENCE..
C C. B. MOLER, ALGORITHM 423, LINEAR EQUATION SOLVER,
C C.A.C.M. 15 (1972), P. 274.
C-----------------------------------------------------------------------
IER = 0
IP(N) = 1
IF (N .EQ. 1) GO TO 70
NM1 = N - 1
DO 60 K = 1,NM1
KP1 = K + 1
M = K
DO 10 I = KP1,N
10 IF (DABS(A(I,K)) .GT. DABS(A(M,K))) M = I
IP(K) = M
T = A(M,K)
IF (M .EQ. K) GO TO 20
IP(N) = -IP(N)
A(M,K) = A(K,K)
A(K,K) = T
20 IF (T .EQ. 0.D0) GO TO 80
T = 1.D0/T
DO 30 I = KP1,N
30 A(I,K) = -A(I,K)*T
DO 50 J = KP1,N
T = A(M,J)
A(M,J) = A(K,J)
A(K,J) = T
IF (T .EQ. 0.D0) GO TO 50
DO 40 I = KP1,N
40 A(I,J) = A(I,J) + A(I,K)*T
50 CONTINUE
60 CONTINUE
70 K = N
IF (A(N,N) .EQ. 0.D0) GO TO 80
RETURN
80 IER = K
IP(N) = 0
RETURN
C----------------------- END OF SUBROUTINE DEC -------------------------
END
C
C
SUBROUTINE SOL (N, NDIM, A, B, IP)
C VERSION REAL DOUBLE PRECISION
INTEGER N,NDIM,IP,NM1,K,KP1,M,I,KB,KM1
DOUBLE PRECISION A,B,T
DIMENSION A(NDIM,N), B(N), IP(N)
C-----------------------------------------------------------------------
C SOLUTION OF LINEAR SYSTEM, A*X = B .
C INPUT..
C N = ORDER OF MATRIX.
C NDIM = DECLARED DIMENSION OF ARRAY A .
C A = TRIANGULARIZED MATRIX OBTAINED FROM DEC.
C B = RIGHT HAND SIDE VECTOR.
C IP = PIVOT VECTOR OBTAINED FROM DEC.
C DO NOT USE IF DEC HAS SET IER .NE. 0.
C OUTPUT..
C B = SOLUTION VECTOR, X .
C-----------------------------------------------------------------------
IF (N .EQ. 1) GO TO 50
NM1 = N - 1
DO 20 K = 1,NM1
KP1 = K + 1
M = IP(K)
T = B(M)
B(M) = B(K)
B(K) = T
DO 10 I = KP1,N
10 B(I) = B(I) + A(I,K)*T
20 CONTINUE
DO 40 KB = 1,NM1
KM1 = N - KB
K = KM1 + 1
B(K) = B(K)/A(K,K)
T = -B(K)
DO 30 I = 1,KM1
30 B(I) = B(I) + A(I,K)*T
40 CONTINUE
50 B(1) = B(1)/A(1,1)
RETURN
C----------------------- END OF SUBROUTINE SOL -------------------------
END
c
c
SUBROUTINE DECH (N, NDIM, A, LB, IP, IER)
C VERSION REAL DOUBLE PRECISION
INTEGER N,NDIM,IP,IER,NM1,K,KP1,M,I,J,LB,NA
DOUBLE PRECISION A,T
DIMENSION A(NDIM,N), IP(N)
C-----------------------------------------------------------------------
C MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION OF A HESSENBERG
C MATRIX WITH LOWER BANDWIDTH LB
C INPUT..
C N = ORDER OF MATRIX A.
C NDIM = DECLARED DIMENSION OF ARRAY A .
C A = MATRIX TO BE TRIANGULARIZED.
C LB = LOWER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED, LB.GE.1).
C OUTPUT..
C A(I,J), I.LE.J = UPPER TRIANGULAR FACTOR, U .
C A(I,J), I.GT.J = MULTIPLIERS = LOWER TRIANGULAR FACTOR, I - L.
C IP(K), K.LT.N = INDEX OF K-TH PIVOT ROW.
C IP(N) = (-1)**(NUMBER OF INTERCHANGES) OR O .
C IER = 0 IF MATRIX A IS NONSINGULAR, OR K IF FOUND TO BE
C SINGULAR AT STAGE K.
C USE SOLH TO OBTAIN SOLUTION OF LINEAR SYSTEM.
C DETERM(A) = IP(N)*A(1,1)*A(2,2)*...*A(N,N).
C IF IP(N)=O, A IS SINGULAR, SOL WILL DIVIDE BY ZERO.
C
C REFERENCE..
C THIS IS A SLIGHT MODIFICATION OF
C C. B. MOLER, ALGORITHM 423, LINEAR EQUATION SOLVER,
C C.A.C.M. 15 (1972), P. 274.
C-----------------------------------------------------------------------
IER = 0
IP(N) = 1
IF (N .EQ. 1) GO TO 70
NM1 = N - 1
DO 60 K = 1,NM1
KP1 = K + 1
M = K
NA = MIN0(N,LB+K)
DO 10 I = KP1,NA
10 IF (DABS(A(I,K)) .GT. DABS(A(M,K))) M = I
IP(K) = M
T = A(M,K)
IF (M .EQ. K) GO TO 20
IP(N) = -IP(N)
A(M,K) = A(K,K)
A(K,K) = T
20 IF (T .EQ. 0.D0) GO TO 80
T = 1.D0/T
DO 30 I = KP1,NA
30 A(I,K) = -A(I,K)*T
DO 50 J = KP1,N
T = A(M,J)
A(M,J) = A(K,J)
A(K,J) = T
IF (T .EQ. 0.D0) GO TO 50
DO 40 I = KP1,NA
40 A(I,J) = A(I,J) + A(I,K)*T
50 CONTINUE
60 CONTINUE
70 K = N
IF (A(N,N) .EQ. 0.D0) GO TO 80
RETURN
80 IER = K
IP(N) = 0
RETURN
C----------------------- END OF SUBROUTINE DECH ------------------------
END
C
C
SUBROUTINE SOLH (N, NDIM, A, LB, B, IP)
C VERSION REAL DOUBLE PRECISION
INTEGER N,NDIM,IP,NM1,K,KP1,M,I,KB,KM1,LB,NA
DOUBLE PRECISION A,B,T
DIMENSION A(NDIM,N), B(N), IP(N)
C-----------------------------------------------------------------------
C SOLUTION OF LINEAR SYSTEM, A*X = B .
C INPUT..
C N = ORDER OF MATRIX A.
C NDIM = DECLARED DIMENSION OF ARRAY A .
C A = TRIANGULARIZED MATRIX OBTAINED FROM DECH.
C LB = LOWER BANDWIDTH OF A.
C B = RIGHT HAND SIDE VECTOR.
C IP = PIVOT VECTOR OBTAINED FROM DEC.
C DO NOT USE IF DECH HAS SET IER .NE. 0.
C OUTPUT..
C B = SOLUTION VECTOR, X .
C-----------------------------------------------------------------------
IF (N .EQ. 1) GO TO 50
NM1 = N - 1
DO 20 K = 1,NM1
KP1 = K + 1
M = IP(K)
T = B(M)
B(M) = B(K)
B(K) = T
NA = MIN0(N,LB+K)
DO 10 I = KP1,NA
10 B(I) = B(I) + A(I,K)*T
20 CONTINUE
DO 40 KB = 1,NM1
KM1 = N - KB
K = KM1 + 1
B(K) = B(K)/A(K,K)
T = -B(K)
DO 30 I = 1,KM1
30 B(I) = B(I) + A(I,K)*T
40 CONTINUE
50 B(1) = B(1)/A(1,1)
RETURN
C----------------------- END OF SUBROUTINE SOLH ------------------------
END
C
SUBROUTINE DECC (N, NDIM, AR, AI, IP, IER)
C VERSION COMPLEX DOUBLE PRECISION
IMPLICIT REAL*8 (A-H,O-Z)
INTEGER N,NDIM,IP,IER,NM1,K,KP1,M,I,J
DIMENSION AR(NDIM,N), AI(NDIM,N), IP(N)
C-----------------------------------------------------------------------
C MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION
C ------ MODIFICATION FOR COMPLEX MATRICES --------
C INPUT..
C N = ORDER OF MATRIX.
C NDIM = DECLARED DIMENSION OF ARRAYS AR AND AI .
C (AR, AI) = MATRIX TO BE TRIANGULARIZED.
C OUTPUT..
C AR(I,J), I.LE.J = UPPER TRIANGULAR FACTOR, U ; REAL PART.
C AI(I,J), I.LE.J = UPPER TRIANGULAR FACTOR, U ; IMAGINARY PART.
C AR(I,J), I.GT.J = MULTIPLIERS = LOWER TRIANGULAR FACTOR, I - L.
C REAL PART.
C AI(I,J), I.GT.J = MULTIPLIERS = LOWER TRIANGULAR FACTOR, I - L.
C IMAGINARY PART.
C IP(K), K.LT.N = INDEX OF K-TH PIVOT ROW.
C IP(N) = (-1)**(NUMBER OF INTERCHANGES) OR O .
C IER = 0 IF MATRIX A IS NONSINGULAR, OR K IF FOUND TO BE
C SINGULAR AT STAGE K.
C USE SOL TO OBTAIN SOLUTION OF LINEAR SYSTEM.
C IF IP(N)=O, A IS SINGULAR, SOL WILL DIVIDE BY ZERO.
C
C REFERENCE..
C C. B. MOLER, ALGORITHM 423, LINEAR EQUATION SOLVER,
C C.A.C.M. 15 (1972), P. 274.
C-----------------------------------------------------------------------
IER = 0
IP(N) = 1
IF (N .EQ. 1) GO TO 70
NM1 = N - 1
DO 60 K = 1,NM1
KP1 = K + 1
M = K
DO 10 I = KP1,N
10 IF (DABS(AR(I,K))+DABS(AI(I,K)) .GT.
& DABS(AR(M,K))+DABS(AI(M,K))) M = I
IP(K) = M
TR = AR(M,K)
TI = AI(M,K)
IF (M .EQ. K) GO TO 20
IP(N) = -IP(N)
AR(M,K) = AR(K,K)
AI(M,K) = AI(K,K)
AR(K,K) = TR
AI(K,K) = TI
20 IF (DABS(TR)+DABS(TI) .EQ. 0.D0) GO TO 80
DEN=TR*TR+TI*TI
TR=TR/DEN
TI=-TI/DEN
DO 30 I = KP1,N
PRODR=AR(I,K)*TR-AI(I,K)*TI
PRODI=AI(I,K)*TR+AR(I,K)*TI
AR(I,K)=-PRODR
AI(I,K)=-PRODI
30 CONTINUE
DO 50 J = KP1,N
TR = AR(M,J)
TI = AI(M,J)
AR(M,J) = AR(K,J)
AI(M,J) = AI(K,J)
AR(K,J) = TR
AI(K,J) = TI
IF (DABS(TR)+DABS(TI) .EQ. 0.D0) GO TO 50
IF (TI .EQ. 0.D0) THEN
DO 40 I = KP1,N
PRODR=AR(I,K)*TR
PRODI=AI(I,K)*TR
AR(I,J) = AR(I,J) + PRODR
AI(I,J) = AI(I,J) + PRODI
40 CONTINUE
GO TO 50
END IF
IF (TR .EQ. 0.D0) THEN
DO 45 I = KP1,N
PRODR=-AI(I,K)*TI
PRODI=AR(I,K)*TI
AR(I,J) = AR(I,J) + PRODR
AI(I,J) = AI(I,J) + PRODI
45 CONTINUE
GO TO 50
END IF
DO 47 I = KP1,N
PRODR=AR(I,K)*TR-AI(I,K)*TI
PRODI=AI(I,K)*TR+AR(I,K)*TI
AR(I,J) = AR(I,J) + PRODR
AI(I,J) = AI(I,J) + PRODI
47 CONTINUE
50 CONTINUE
60 CONTINUE
70 K = N
IF (DABS(AR(N,N))+DABS(AI(N,N)) .EQ. 0.D0) GO TO 80
RETURN
80 IER = K
IP(N) = 0
RETURN
C----------------------- END OF SUBROUTINE DECC ------------------------
END
C
C
SUBROUTINE SOLC (N, NDIM, AR, AI, BR, BI, IP)
C VERSION COMPLEX DOUBLE PRECISION
IMPLICIT REAL*8 (A-H,O-Z)
INTEGER N,NDIM,IP,NM1,K,KP1,M,I,KB,KM1
DIMENSION AR(NDIM,N), AI(NDIM,N), BR(N), BI(N), IP(N)
C-----------------------------------------------------------------------
C SOLUTION OF LINEAR SYSTEM, A*X = B .
C INPUT..
C N = ORDER OF MATRIX.
C NDIM = DECLARED DIMENSION OF ARRAYS AR AND AI.
C (AR,AI) = TRIANGULARIZED MATRIX OBTAINED FROM DEC.
C (BR,BI) = RIGHT HAND SIDE VECTOR.
C IP = PIVOT VECTOR OBTAINED FROM DEC.
C DO NOT USE IF DEC HAS SET IER .NE. 0.
C OUTPUT..
C (BR,BI) = SOLUTION VECTOR, X .
C-----------------------------------------------------------------------
IF (N .EQ. 1) GO TO 50
NM1 = N - 1
DO 20 K = 1,NM1
KP1 = K + 1
M = IP(K)
TR = BR(M)
TI = BI(M)
BR(M) = BR(K)
BI(M) = BI(K)
BR(K) = TR
BI(K) = TI
DO 10 I = KP1,N
PRODR=AR(I,K)*TR-AI(I,K)*TI
PRODI=AI(I,K)*TR+AR(I,K)*TI
BR(I) = BR(I) + PRODR
BI(I) = BI(I) + PRODI
10 CONTINUE
20 CONTINUE
DO 40 KB = 1,NM1
KM1 = N - KB
K = KM1 + 1
DEN=AR(K,K)*AR(K,K)+AI(K,K)*AI(K,K)
PRODR=BR(K)*AR(K,K)+BI(K)*AI(K,K)
PRODI=BI(K)*AR(K,K)-BR(K)*AI(K,K)
BR(K)=PRODR/DEN
BI(K)=PRODI/DEN
TR = -BR(K)
TI = -BI(K)
DO 30 I = 1,KM1
PRODR=AR(I,K)*TR-AI(I,K)*TI
PRODI=AI(I,K)*TR+AR(I,K)*TI
BR(I) = BR(I) + PRODR
BI(I) = BI(I) + PRODI
30 CONTINUE
40 CONTINUE
50 CONTINUE
DEN=AR(1,1)*AR(1,1)+AI(1,1)*AI(1,1)
PRODR=BR(1)*AR(1,1)+BI(1)*AI(1,1)
PRODI=BI(1)*AR(1,1)-BR(1)*AI(1,1)
BR(1)=PRODR/DEN
BI(1)=PRODI/DEN
RETURN
C----------------------- END OF SUBROUTINE SOLC ------------------------
END
C
C
SUBROUTINE DECHC (N, NDIM, AR, AI, LB, IP, IER)
C VERSION COMPLEX DOUBLE PRECISION
IMPLICIT REAL*8 (A-H,O-Z)
INTEGER N,NDIM,IP,IER,NM1,K,KP1,M,I,J
DIMENSION AR(NDIM,N), AI(NDIM,N), IP(N)
C-----------------------------------------------------------------------
C MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION
C ------ MODIFICATION FOR COMPLEX MATRICES --------
C INPUT..
C N = ORDER OF MATRIX.
C NDIM = DECLARED DIMENSION OF ARRAYS AR AND AI .
C (AR, AI) = MATRIX TO BE TRIANGULARIZED.
C OUTPUT..
C AR(I,J), I.LE.J = UPPER TRIANGULAR FACTOR, U ; REAL PART.
C AI(I,J), I.LE.J = UPPER TRIANGULAR FACTOR, U ; IMAGINARY PART.
C AR(I,J), I.GT.J = MULTIPLIERS = LOWER TRIANGULAR FACTOR, I - L.
C REAL PART.
C AI(I,J), I.GT.J = MULTIPLIERS = LOWER TRIANGULAR FACTOR, I - L.
C IMAGINARY PART.
C LB = LOWER BANDWIDTH OF A (DIAGONAL NOT COUNTED), LB.GE.1.
C IP(K), K.LT.N = INDEX OF K-TH PIVOT ROW.
C IP(N) = (-1)**(NUMBER OF INTERCHANGES) OR O .
C IER = 0 IF MATRIX A IS NONSINGULAR, OR K IF FOUND TO BE
C SINGULAR AT STAGE K.
C USE SOL TO OBTAIN SOLUTION OF LINEAR SYSTEM.
C IF IP(N)=O, A IS SINGULAR, SOL WILL DIVIDE BY ZERO.
C
C REFERENCE..
C C. B. MOLER, ALGORITHM 423, LINEAR EQUATION SOLVER,
C C.A.C.M. 15 (1972), P. 274.
C-----------------------------------------------------------------------
IER = 0
IP(N) = 1
IF (LB .EQ. 0) GO TO 70
IF (N .EQ. 1) GO TO 70
NM1 = N - 1
DO 60 K = 1,NM1
KP1 = K + 1
M = K
NA = MIN0(N,LB+K)
DO 10 I = KP1,NA
10 IF (DABS(AR(I,K))+DABS(AI(I,K)) .GT.
& DABS(AR(M,K))+DABS(AI(M,K))) M = I
IP(K) = M
TR = AR(M,K)
TI = AI(M,K)
IF (M .EQ. K) GO TO 20
IP(N) = -IP(N)
AR(M,K) = AR(K,K)
AI(M,K) = AI(K,K)
AR(K,K) = TR
AI(K,K) = TI
20 IF (DABS(TR)+DABS(TI) .EQ. 0.D0) GO TO 80
DEN=TR*TR+TI*TI
TR=TR/DEN
TI=-TI/DEN
DO 30 I = KP1,NA
PRODR=AR(I,K)*TR-AI(I,K)*TI
PRODI=AI(I,K)*TR+AR(I,K)*TI
AR(I,K)=-PRODR
AI(I,K)=-PRODI
30 CONTINUE
DO 50 J = KP1,N
TR = AR(M,J)
TI = AI(M,J)
AR(M,J) = AR(K,J)
AI(M,J) = AI(K,J)
AR(K,J) = TR
AI(K,J) = TI
IF (DABS(TR)+DABS(TI) .EQ. 0.D0) GO TO 50
IF (TI .EQ. 0.D0) THEN
DO 40 I = KP1,NA
PRODR=AR(I,K)*TR
PRODI=AI(I,K)*TR
AR(I,J) = AR(I,J) + PRODR
AI(I,J) = AI(I,J) + PRODI
40 CONTINUE
GO TO 50
END IF
IF (TR .EQ. 0.D0) THEN
DO 45 I = KP1,NA
PRODR=-AI(I,K)*TI
PRODI=AR(I,K)*TI
AR(I,J) = AR(I,J) + PRODR
AI(I,J) = AI(I,J) + PRODI
45 CONTINUE
GO TO 50
END IF
DO 47 I = KP1,NA
PRODR=AR(I,K)*TR-AI(I,K)*TI
PRODI=AI(I,K)*TR+AR(I,K)*TI
AR(I,J) = AR(I,J) + PRODR
AI(I,J) = AI(I,J) + PRODI
47 CONTINUE
50 CONTINUE
60 CONTINUE
70 K = N
IF (DABS(AR(N,N))+DABS(AI(N,N)) .EQ. 0.D0) GO TO 80
RETURN
80 IER = K
IP(N) = 0
RETURN
C----------------------- END OF SUBROUTINE DECHC -----------------------
END
C
C
SUBROUTINE SOLHC (N, NDIM, AR, AI, LB, BR, BI, IP)
C VERSION COMPLEX DOUBLE PRECISION
IMPLICIT REAL*8 (A-H,O-Z)
INTEGER N,NDIM,IP,NM1,K,KP1,M,I,KB,KM1
DIMENSION AR(NDIM,N), AI(NDIM,N), BR(N), BI(N), IP(N)
C-----------------------------------------------------------------------
C SOLUTION OF LINEAR SYSTEM, A*X = B .
C INPUT..
C N = ORDER OF MATRIX.
C NDIM = DECLARED DIMENSION OF ARRAYS AR AND AI.
C (AR,AI) = TRIANGULARIZED MATRIX OBTAINED FROM DEC.
C (BR,BI) = RIGHT HAND SIDE VECTOR.
C LB = LOWER BANDWIDTH OF A.
C IP = PIVOT VECTOR OBTAINED FROM DEC.
C DO NOT USE IF DEC HAS SET IER .NE. 0.
C OUTPUT..
C (BR,BI) = SOLUTION VECTOR, X .
C-----------------------------------------------------------------------
IF (N .EQ. 1) GO TO 50
NM1 = N - 1
IF (LB .EQ. 0) GO TO 9999
DO 20 K = 1,NM1
KP1 = K + 1
M = IP(K)
TR = BR(M)
TI = BI(M)
BR(M) = BR(K)
BI(M) = BI(K)
BR(K) = TR
BI(K) = TI
DO 10 I = KP1,MIN0(N,LB+K)
PRODR=AR(I,K)*TR-AI(I,K)*TI
PRODI=AI(I,K)*TR+AR(I,K)*TI
BR(I) = BR(I) + PRODR
BI(I) = BI(I) + PRODI
10 CONTINUE
20 CONTINUE
9999 CONTINUE
DO 40 KB = 1,NM1
KM1 = N - KB
K = KM1 + 1
DEN=AR(K,K)*AR(K,K)+AI(K,K)*AI(K,K)
PRODR=BR(K)*AR(K,K)+BI(K)*AI(K,K)
PRODI=BI(K)*AR(K,K)-BR(K)*AI(K,K)
BR(K)=PRODR/DEN
BI(K)=PRODI/DEN
TR = -BR(K)
TI = -BI(K)
DO 30 I = 1,KM1
PRODR=AR(I,K)*TR-AI(I,K)*TI
PRODI=AI(I,K)*TR+AR(I,K)*TI
BR(I) = BR(I) + PRODR
BI(I) = BI(I) + PRODI
30 CONTINUE
40 CONTINUE
50 CONTINUE
DEN=AR(1,1)*AR(1,1)+AI(1,1)*AI(1,1)
PRODR=BR(1)*AR(1,1)+BI(1)*AI(1,1)
PRODI=BI(1)*AR(1,1)-BR(1)*AI(1,1)
BR(1)=PRODR/DEN
BI(1)=PRODI/DEN
RETURN
C----------------------- END OF SUBROUTINE SOLHC -----------------------
END
C
SUBROUTINE DECB (N, NDIM, A, ML, MU, IP, IER)
REAL*8 A,T
DIMENSION A(NDIM,N), IP(N)
C-----------------------------------------------------------------------
C MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION OF A BANDED
C MATRIX WITH LOWER BANDWIDTH ML AND UPPER BANDWIDTH MU
C INPUT..
C N ORDER OF THE ORIGINAL MATRIX A.
C NDIM DECLARED DIMENSION OF ARRAY A.
C A CONTAINS THE MATRIX IN BAND STORAGE. THE COLUMNS
C OF THE MATRIX ARE STORED IN THE COLUMNS OF A AND
C THE DIAGONALS OF THE MATRIX ARE STORED IN ROWS
C ML+1 THROUGH 2*ML+MU+1 OF A.
C ML LOWER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED).
C MU UPPER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED).
C OUTPUT..
C A AN UPPER TRIANGULAR MATRIX IN BAND STORAGE AND
C THE MULTIPLIERS WHICH WERE USED TO OBTAIN IT.
C IP INDEX VECTOR OF PIVOT INDICES.
C IP(N) (-1)**(NUMBER OF INTERCHANGES) OR O .
C IER = 0 IF MATRIX A IS NONSINGULAR, OR = K IF FOUND TO BE
C SINGULAR AT STAGE K.
C USE SOLB TO OBTAIN SOLUTION OF LINEAR SYSTEM.
C DETERM(A) = IP(N)*A(MD,1)*A(MD,2)*...*A(MD,N) WITH MD=ML+MU+1.
C IF IP(N)=O, A IS SINGULAR, SOLB WILL DIVIDE BY ZERO.
C
C REFERENCE..
C THIS IS A MODIFICATION OF
C C. B. MOLER, ALGORITHM 423, LINEAR EQUATION SOLVER,
C C.A.C.M. 15 (1972), P. 274.
C-----------------------------------------------------------------------
IER = 0
IP(N) = 1
MD = ML + MU + 1
MD1 = MD + 1
JU = 0
IF (ML .EQ. 0) GO TO 70
IF (N .EQ. 1) GO TO 70
IF (N .LT. MU+2) GO TO 7
DO 5 J = MU+2,N
DO 5 I = 1,ML
5 A(I,J) = 0.D0
7 NM1 = N - 1
DO 60 K = 1,NM1
KP1 = K + 1
M = MD
MDL = MIN(ML,N-K) + MD
DO 10 I = MD1,MDL
10 IF (DABS(A(I,K)) .GT. DABS(A(M,K))) M = I
IP(K) = M + K - MD
T = A(M,K)
IF (M .EQ. MD) GO TO 20
IP(N) = -IP(N)
A(M,K) = A(MD,K)
A(MD,K) = T
20 IF (T .EQ. 0.D0) GO TO 80
T = 1.D0/T
DO 30 I = MD1,MDL
30 A(I,K) = -A(I,K)*T
JU = MIN0(MAX0(JU,MU+IP(K)),N)
MM = MD
IF (JU .LT. KP1) GO TO 60
DO 50 J = KP1,JU
M = M - 1
MM = MM - 1
T = A(M,J)
IF (M .EQ. MM) GO TO 35
A(M,J) = A(MM,J)
A(MM,J) = T
35 IF (T .EQ. 0.D0) GO TO 50
JK = J - K
DO 40 I = MD1,MDL
IJK = I - JK
40 A(IJK,J) = A(IJK,J) + A(I,K)*T
50 CONTINUE
60 CONTINUE
70 K = N
IF (A(MD,N) .EQ. 0.D0) GO TO 80
RETURN
80 IER = K
IP(N) = 0
RETURN
C----------------------- END OF SUBROUTINE DECB ------------------------
END
C
C
SUBROUTINE SOLB (N, NDIM, A, ML, MU, B, IP)
REAL*8 A,B,T
DIMENSION A(NDIM,N), B(N), IP(N)
C-----------------------------------------------------------------------
C SOLUTION OF LINEAR SYSTEM, A*X = B .
C INPUT..
C N ORDER OF MATRIX A.
C NDIM DECLARED DIMENSION OF ARRAY A .
C A TRIANGULARIZED MATRIX OBTAINED FROM DECB.
C ML LOWER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED).
C MU UPPER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED).
C B RIGHT HAND SIDE VECTOR.
C IP PIVOT VECTOR OBTAINED FROM DECB.
C DO NOT USE IF DECB HAS SET IER .NE. 0.
C OUTPUT..
C B SOLUTION VECTOR, X .
C-----------------------------------------------------------------------
MD = ML + MU + 1
MD1 = MD + 1
MDM = MD - 1
IF (ML .EQ. 0) GO TO 9998
IF (N .EQ. 1) GO TO 50
NM1 = N - 1
DO 20 K = 1,NM1
M = IP(K)
T = B(M)
B(M) = B(K)
B(K) = T
MDL = MIN(ML,N-K) + MD
DO 10 I = MD1,MDL
IMD = I + K - MD
10 B(IMD) = B(IMD) + A(I,K)*T
20 CONTINUE
9998 CONTINUE
DO 40 KB = 1,NM1
K = N + 1 - KB
B(K) = B(K)/A(MD,K)
T = -B(K)
KMD = MD - K
LM = MAX0(1,KMD+1)
DO 30 I = LM,MDM
IMD = I - KMD
30 B(IMD) = B(IMD) + A(I,K)*T
40 CONTINUE
50 B(1) = B(1)/A(MD,1)
RETURN
C----------------------- END OF SUBROUTINE SOLB ------------------------
END
C
SUBROUTINE DECBC (N, NDIM, AR, AI, ML, MU, IP, IER)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION AR(NDIM,N), AI(NDIM,N), IP(N)
C-----------------------------------------------------------------------
C MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION OF A BANDED COMPLEX
C MATRIX WITH LOWER BANDWIDTH ML AND UPPER BANDWIDTH MU
C INPUT..
C N ORDER OF THE ORIGINAL MATRIX A.
C NDIM DECLARED DIMENSION OF ARRAY A.
C AR, AI CONTAINS THE MATRIX IN BAND STORAGE. THE COLUMNS
C OF THE MATRIX ARE STORED IN THE COLUMNS OF AR (REAL
C PART) AND AI (IMAGINARY PART) AND
C THE DIAGONALS OF THE MATRIX ARE STORED IN ROWS
C ML+1 THROUGH 2*ML+MU+1 OF AR AND AI.
C ML LOWER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED).
C MU UPPER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED).
C OUTPUT..
C AR, AI AN UPPER TRIANGULAR MATRIX IN BAND STORAGE AND
C THE MULTIPLIERS WHICH WERE USED TO OBTAIN IT.
C IP INDEX VECTOR OF PIVOT INDICES.
C IP(N) (-1)**(NUMBER OF INTERCHANGES) OR O .
C IER = 0 IF MATRIX A IS NONSINGULAR, OR = K IF FOUND TO BE
C SINGULAR AT STAGE K.
C USE SOLBC TO OBTAIN SOLUTION OF LINEAR SYSTEM.
C DETERM(A) = IP(N)*A(MD,1)*A(MD,2)*...*A(MD,N) WITH MD=ML+MU+1.
C IF IP(N)=O, A IS SINGULAR, SOLBC WILL DIVIDE BY ZERO.
C
C REFERENCE..
C THIS IS A MODIFICATION OF
C C. B. MOLER, ALGORITHM 423, LINEAR EQUATION SOLVER,
C C.A.C.M. 15 (1972), P. 274.
C-----------------------------------------------------------------------
IER = 0
IP(N) = 1
MD = ML + MU + 1
MD1 = MD + 1
JU = 0
IF (ML .EQ. 0) GO TO 70
IF (N .EQ. 1) GO TO 70
IF (N .LT. MU+2) GO TO 7
DO 5 J = MU+2,N
DO 5 I = 1,ML
AR(I,J) = 0.D0
AI(I,J) = 0.D0
5 CONTINUE
7 NM1 = N - 1
DO 60 K = 1,NM1
KP1 = K + 1
M = MD
MDL = MIN(ML,N-K) + MD
DO 10 I = MD1,MDL
10 IF (DABS(AR(I,K))+DABS(AI(I,K)) .GT.
& DABS(AR(M,K))+DABS(AI(M,K))) M = I
IP(K) = M + K - MD
TR = AR(M,K)
TI = AI(M,K)
IF (M .EQ. MD) GO TO 20
IP(N) = -IP(N)
AR(M,K) = AR(MD,K)
AI(M,K) = AI(MD,K)
AR(MD,K) = TR
AI(MD,K) = TI
20 IF (DABS(TR)+DABS(TI) .EQ. 0.D0) GO TO 80
DEN=TR*TR+TI*TI
TR=TR/DEN
TI=-TI/DEN
DO 30 I = MD1,MDL
PRODR=AR(I,K)*TR-AI(I,K)*TI
PRODI=AI(I,K)*TR+AR(I,K)*TI
AR(I,K)=-PRODR
AI(I,K)=-PRODI
30 CONTINUE
JU = MIN0(MAX0(JU,MU+IP(K)),N)
MM = MD
IF (JU .LT. KP1) GO TO 60
DO 50 J = KP1,JU
M = M - 1
MM = MM - 1
TR = AR(M,J)
TI = AI(M,J)
IF (M .EQ. MM) GO TO 35
AR(M,J) = AR(MM,J)
AI(M,J) = AI(MM,J)
AR(MM,J) = TR
AI(MM,J) = TI
35 IF (DABS(TR)+DABS(TI) .EQ. 0.D0) GO TO 50
JK = J - K
IF (TI .EQ. 0.D0) THEN
DO 40 I = MD1,MDL
IJK = I - JK
PRODR=AR(I,K)*TR
PRODI=AI(I,K)*TR
AR(IJK,J) = AR(IJK,J) + PRODR
AI(IJK,J) = AI(IJK,J) + PRODI
40 CONTINUE
GO TO 50
END IF
IF (TR .EQ. 0.D0) THEN
DO 45 I = MD1,MDL
IJK = I - JK
PRODR=-AI(I,K)*TI
PRODI=AR(I,K)*TI
AR(IJK,J) = AR(IJK,J) + PRODR
AI(IJK,J) = AI(IJK,J) + PRODI
45 CONTINUE
GO TO 50
END IF
DO 47 I = MD1,MDL
IJK = I - JK
PRODR=AR(I,K)*TR-AI(I,K)*TI
PRODI=AI(I,K)*TR+AR(I,K)*TI
AR(IJK,J) = AR(IJK,J) + PRODR
AI(IJK,J) = AI(IJK,J) + PRODI
47 CONTINUE
50 CONTINUE
60 CONTINUE
70 K = N
IF (DABS(AR(MD,N))+DABS(AI(MD,N)) .EQ. 0.D0) GO TO 80
RETURN
80 IER = K
IP(N) = 0
RETURN
C----------------------- END OF SUBROUTINE DECBC ------------------------
END
C
C
SUBROUTINE SOLBC (N, NDIM, AR, AI, ML, MU, BR, BI, IP)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION AR(NDIM,N), AI(NDIM,N), BR(N), BI(N), IP(N)
C-----------------------------------------------------------------------
C SOLUTION OF LINEAR SYSTEM, A*X = B ,
C VERSION BANDED AND COMPLEX-DOUBLE PRECISION.
C INPUT..
C N ORDER OF MATRIX A.
C NDIM DECLARED DIMENSION OF ARRAY A .
C AR, AI TRIANGULARIZED MATRIX OBTAINED FROM DECB (REAL AND IMAG. PART).
C ML LOWER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED).
C MU UPPER BANDWIDTH OF A (DIAGONAL IS NOT COUNTED).
C BR, BI RIGHT HAND SIDE VECTOR (REAL AND IMAG. PART).
C IP PIVOT VECTOR OBTAINED FROM DECBC.
C DO NOT USE IF DECB HAS SET IER .NE. 0.
C OUTPUT..
C BR, BI SOLUTION VECTOR, X (REAL AND IMAG. PART).
C-----------------------------------------------------------------------
MD = ML + MU + 1
MD1 = MD + 1
MDM = MD - 1
IF (ML .EQ. 0) GO TO 9997
IF (N .EQ. 1) GO TO 50
NM1 = N - 1
DO 20 K = 1,NM1
M = IP(K)
TR = BR(M)
TI = BI(M)
BR(M) = BR(K)
BI(M) = BI(K)
BR(K) = TR
BI(K) = TI
MDL = MIN(ML,N-K) + MD
DO 10 I = MD1,MDL
IMD = I + K - MD
PRODR=AR(I,K)*TR-AI(I,K)*TI
PRODI=AI(I,K)*TR+AR(I,K)*TI
BR(IMD) = BR(IMD) + PRODR
BI(IMD) = BI(IMD) + PRODI
10 CONTINUE
20 CONTINUE
9997 CONTINUE
DO 40 KB = 1,NM1
K = N + 1 - KB
DEN=AR(MD,K)*AR(MD,K)+AI(MD,K)*AI(MD,K)
PRODR=BR(K)*AR(MD,K)+BI(K)*AI(MD,K)
PRODI=BI(K)*AR(MD,K)-BR(K)*AI(MD,K)
BR(K)=PRODR/DEN
BI(K)=PRODI/DEN
TR = -BR(K)
TI = -BI(K)
KMD = MD - K
LM = MAX0(1,KMD+1)
DO 30 I = LM,MDM
IMD = I - KMD
PRODR=AR(I,K)*TR-AI(I,K)*TI
PRODI=AI(I,K)*TR+AR(I,K)*TI
BR(IMD) = BR(IMD) + PRODR
BI(IMD) = BI(IMD) + PRODI
30 CONTINUE
40 CONTINUE
DEN=AR(MD,1)*AR(MD,1)+AI(MD,1)*AI(MD,1)
PRODR=BR(1)*AR(MD,1)+BI(1)*AI(MD,1)
PRODI=BI(1)*AR(MD,1)-BR(1)*AI(MD,1)
BR(1)=PRODR/DEN
BI(1)=PRODI/DEN
50 CONTINUE
RETURN
C----------------------- END OF SUBROUTINE SOLBC ------------------------
END
c
C
subroutine elmhes(nm,n,low,igh,a,int)
C
integer i,j,m,n,la,nm,igh,kp1,low,mm1,mp1
real*8 a(nm,n)
real*8 x,y
real*8 dabs
integer int(igh)
C
C this subroutine is a translation of the algol procedure elmhes,
C num. math. 12, 349-368(1968) by martin and wilkinson.
C handbook for auto. comp., vol.ii-linear algebra, 339-358(1971).
C
C given a real general matrix, this subroutine
C reduces a submatrix situated in rows and columns
C low through igh to upper hessenberg form by
C stabilized elementary similarity transformations.
C
C on input:
C
C nm must be set to the row dimension of two-dimensional
C array parameters as declared in the calling program
C dimension statement;
C
C n is the order of the matrix;
C
C low and igh are integers determined by the balancing
C subroutine balanc. if balanc has not been used,
C set low=1, igh=n;
C
C a contains the input matrix.
C
C on output:
C
C a contains the hessenberg matrix. the multipliers
C which were used in the reduction are stored in the
C remaining triangle under the hessenberg matrix;
C
C int contains information on the rows and columns
C interchanged in the reduction.
C only elements low through igh are used.
C
C questions and comments should be directed to b. s. garbow,
C applied mathematics division, argonne national laboratory
C
C ------------------------------------------------------------------
C
la = igh - 1
kp1 = low + 1
if (la .lt. kp1) go to 200
C
do 180 m = kp1, la
mm1 = m - 1
x = 0.0d0
i = m
C
do 100 j = m, igh
if (dabs(a(j,mm1)) .le. dabs(x)) go to 100
x = a(j,mm1)
i = j
100 continue
C
int(m) = i
if (i .eq. m) go to 130
C :::::::::: interchange rows and columns of a ::::::::::
do 110 j = mm1, n
y = a(i,j)
a(i,j) = a(m,j)
a(m,j) = y
110 continue
C
do 120 j = 1, igh
y = a(j,i)
a(j,i) = a(j,m)
a(j,m) = y
120 continue
C :::::::::: end interchange ::::::::::
130 if (x .eq. 0.0d0) go to 180
mp1 = m + 1
C
do 160 i = mp1, igh
y = a(i,mm1)
if (y .eq. 0.0d0) go to 160
y = y / x
a(i,mm1) = y
C
do 140 j = m, n
140 a(i,j) = a(i,j) - y * a(m,j)
C
do 150 j = 1, igh
150 a(j,m) = a(j,m) + y * a(j,i)
C
160 continue
C
180 continue
C
200 return
C :::::::::: last card of elmhes ::::::::::
end