from tqdm import tqdm
SAMPLES_PER_CLASS = [50, 100, 150, 200, 250]
N_AUGMENT = [2, 4, 8, 16, 32]
datasets = ['bace', 'bbbp']
out_file = 'eval_result_supervised_augment.csv'
N_TRIALS = 20
EPOCHS = 20
for dataset in datasets:
for SAMPLE in SAMPLES_PER_CLASS:
for n_augment in N_AUGMENT:
for i in tqdm(range(N_TRIALS)):
!python pseudo_label/main.py --dataset-name={dataset} --epochs={EPOCHS} \
--batch-size=16 --model-name-or-path=shahrukhx01/muv2x-simcse-smole-bert \
--samples-per-class={SAMPLE} --eval-after={EPOCHS} --train-log=0 --train-ssl=0 \
--out-file={out_file} --n-augment={n_augment}
!cat {out_file}
from tqdm import tqdm
SAMPLES_PER_CLASS = [50, 100, 150, 200, 250]
datasets = ['bace', 'bbbp']
out_file = 'eval_result_pseudo_label.csv'
N_TRIALS = 20
for dataset in datasets:
for SAMPLE in SAMPLES_PER_CLASS:
for i in tqdm(range(N_TRIALS)):
!python pseudo_label/main.py --dataset-name={dataset} --epochs=60 \
--batch-size=16 --model-name-or-path=shahrukhx01/muv2x-simcse-smole-bert \
--samples-per-class={SAMPLE} --eval-after=60 --train-log=0 --train-ssl=1 --out-file={out_file}
!cat {out_file}
from tqdm import tqdm
SAMPLES_PER_CLASS = [50, 100, 150, 200, 250]
N_AUGMENT = [2, 4, 8, 16, 32]
datasets = ['bace', 'bbbp']
out_file = 'eval_result_pseudo_label_augment.csv'
N_TRIALS = 20
EPOCHS = 20
for dataset in datasets:
for SAMPLE in SAMPLES_PER_CLASS:
for n_augment in N_AUGMENT:
for i in tqdm(range(N_TRIALS)):
!python pseudo_label/main.py --dataset-name={dataset} --epochs={EPOCHS} \
--batch-size=16 --model-name-or-path=shahrukhx01/muv2x-simcse-smole-bert \
--samples-per-class={SAMPLE} --eval-after={EPOCHS} --train-log=0 --train-ssl=1 \
--out-file={out_file} --n-augment={n_augment}
!cat {out_file}
from tqdm import tqdm
SAMPLES_PER_CLASS = [50, 100, 150, 200, 250]
datasets = ['bace', 'bbbp']
posterior_thresholds = [0.8, 0.9]
N_TRIALS = 20
out_file = 'eval_result_co_training.csv'
for posterior_threshold in posterior_thresholds:
for dataset in datasets:
for SAMPLE in SAMPLES_PER_CLASS:
for i in tqdm(range(N_TRIALS)):
!python co_training/main.py --dataset-name={dataset} --epochs=80 \
--batch-size=8 --model-name-or-path=shahrukhx01/muv2x-simcse-smole-bert \
--samples-per-class={SAMPLE} --eval-after=80 --train-log=0 --train-ssl=1 \
--out-file={out_file} --posterior-threshold={posterior_threshold}
!cat {out_file}