Skip to content

Commit

Permalink
2nd commit
Browse files Browse the repository at this point in the history
  • Loading branch information
MoralesCastilla committed Apr 1, 2024
1 parent 42ccfb1 commit 8202252
Show file tree
Hide file tree
Showing 2 changed files with 293 additions and 0 deletions.
21 changes: 21 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2020 Ignacio Morales-Castilla

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
272 changes: 272 additions & 0 deletions R_code/1_Script_run_explore_model.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,272 @@
#'#############################################################
#' Phylogenetic estimates of species-level phenology improve ecological forecasting
#'
#' * Script #1 Phylogenetic Mixed Model fitting
#'
#'
#' by Morales-Castilla, I., et al.
#' feb 2024
#'#############################################################


## Runs (or reads) the phylogeny models, extracts some output
## Does some basic plotting

rm(list=ls())
options(stringsAsFactors = FALSE)

# Setting working directory. Add in your own path in an if statement for your file structure
setwd("~/your/local/address/")


# Loading packages
library(caper)
library(pez)
library(phytools)
library(rstan)
library(shinystan)
library(plyr)
library(dplyr)

options(mc.cores = parallel::detectCores())



#'######################################
#### load data and phylogeny ####
#'######################################


d = read.csv("data/ospreebbphyloms_forknb.csv")
phylo = read.tree("data/phyloforphyloms.tre")





#'###################################
# Run the models ####
#'###################################

## Fit model here
fitlambest <- stan("stan_code/PhenoPhyloMM_PMM.stan",
data=list(N=nrow(d),
n_sp=nspecies,
sp=d$sppnum,
x1=d$force.z,
x2 = d$chill.z,
x3=d$photo.z,
y=d$resp,
Vphy=vcv(phylo, corr = TRUE)),
iter = 4000,
warmup = 2000, # half the iter as warmp is default, but leaving in case we want to change
chains = 4,
seed = 117
)

## Save fitted posterior
saveRDS(fitlambest, "output/fit_model_PMM.rds")

fitlamb0 <- stan("stan/PhenoPhyloMM_HMM.stan",
data=list(N=nrow(d),
n_sp=nspecies,
sp=d$sppnum,
x1=d$force.z,
x2 = d$chill.z,
x3=d$photo.z,
y=d$resp,
Vphy=vcv(phylo, corr = TRUE)),
iter = 4000,
warmup = 2000,
chains = 4,
seed = 117
)
saveRDS(fitlamb0, "output/fit_model_HMM.rds")



#'###################################
# Explore model fit ####
#'###################################

## Summarize full fit
# summary(fit)$summary

## Summarize lambdas, b_zf, b_zc, , b_zp, intercept mean, and sigmas
fitsum <- summary(fitlambest, pars = list("a_z", "sigma_interceptsa",
"b_zf", "sigma_interceptsbf", "lam_interceptsbf",
"b_zc", "sigma_interceptsbc", "lam_interceptsbc",
"b_zp", "sigma_interceptsbp", "lam_interceptsbp","sigma_y"))$summary

fitsumdf <- as.data.frame(fitsum)

source("source/stan_utility.R")
check_all_diagnostics(fitlambest)





#'###############################################
#### comparing estimates lambda est vs 1 vs 0 ####
#'###############################################


## load models



## Summarize lambdas, b_zf, b_zc, , b_zp, intercept mean, and sigmas
tableresults.0 = summary(fitlam0, pars = list("a_z", "sigma_interceptsa", "b_zf", "sigma_interceptsbf", "b_zc", "sigma_interceptsbc", "b_zp", "sigma_interceptsbp", "sigma_y"))$summary
tableresults.est = summary(fitlambest, pars = list("a_z", "lam_interceptsa", "sigma_interceptsa", "b_zf", "lam_interceptsbf", "sigma_interceptsbf", "b_zc", "lam_interceptsbc", "sigma_interceptsbc", "b_zp", "lam_interceptsbp", "sigma_interceptsbp", "sigma_y"))$summary



## rename model to include species names
names(fitlambest)[grep(pattern = "^a\\[", x = names(fitlambest))] <- phylo$tip.label
names(fitlambest)[grep(pattern = "^b_force", x = names(fitlambest))] <- phylo$tip.label
names(fitlambest)[grep(pattern = "^b_chill", x = names(fitlambest))] <- phylo$tip.label
names(fitlambest)[grep(pattern = "^b_photo", x = names(fitlambest))] <- phylo$tip.label

names(fitlam0)[grep(pattern = "^a\\[", x = names(fitlam0))] <- phylo$tip.label
names(fitlam0)[grep(pattern = "^b_force", x = names(fitlam0))] <- phylo$tip.label
names(fitlam0)[grep(pattern = "^b_chill", x = names(fitlam0))] <- phylo$tip.label
names(fitlam0)[grep(pattern = "^b_photo", x = names(fitlam0))] <- phylo$tip.label




# get model estimates per species ----

## where species are

posspsindata.est <- list(10:200,202:392,394:584)
posspsindata.01 <- list(6:196,198:388,390:580)


## forcing
cueforce = summary(fitlambest)$summary[posspsindata.est[[1]],"mean"]
cueforcesdup = summary(fitlambest)$summary[posspsindata.est[[1]],"75%"]
cueforcesdlow = summary(fitlambest)$summary[posspsindata.est[[1]],"25%"]

cueforce0 = summary(fitlam0)$summary[posspsindata.01[[1]],"mean"]
cueforcesdup0 = summary(fitlam0)$summary[posspsindata.01[[1]],"75%"]
cueforcesdlow0 = summary(fitlam0)$summary[posspsindata.01[[1]],"25%"]


## chill
cuechill = summary(fitlambest)$summary[posspsindata.est[[2]],"mean"]
cuechillsdup = summary(fitlambest)$summary[posspsindata.est[[2]],"75%"]
cuechillsdlow = summary(fitlambest)$summary[posspsindata.est[[2]],"25%"]

cuechill0 = summary(fitlam0)$summary[posspsindata.01[[2]],"mean"]
cuechillsdup0 = summary(fitlam0)$summary[posspsindata.01[[2]],"75%"]
cuechillsdlow0 = summary(fitlam0)$summary[posspsindata.01[[2]],"25%"]


## photo
cuephoto = summary(fitlambest)$summary[posspsindata.est[[3]],"mean"]
cuephotosdup = summary(fitlambest)$summary[posspsindata.est[[3]],"75%"]
cuephotosdlow = summary(fitlambest)$summary[posspsindata.est[[3]],"25%"]

cuephoto0 = summary(fitlam0)$summary[posspsindata.01[[3]],"mean"]
cuephotosdup0 = summary(fitlam0)$summary[posspsindata.01[[3]],"75%"]
cuephotosdlow0 = summary(fitlam0)$summary[posspsindata.01[[3]],"25%"]





### plot correlations angio ----
plotting = F
lambdazero = F

if(plotting){

dev.off()
par(mfrow=c(1,3))

virid <- colorRampPalette(c("yellow","darkcyan","purple"))

colschill <- virid(30)[as.numeric(cut(c(cuechill0, cuechill),breaks = 30))]
colschillhmm <- colschill[1:length(cuechill0)]
colschillpmm <- colschill[(length(cuechill0)+1):length(colschill)]


plot(cuechill0, cuechill,
xlab="sensitivity to chilling HMM",
ylab="sensitivity to chilling PMM",
pch=16, col=adjustcolor(colschillpmm,0.4),cex=1.2, cex.lab=1.5,
xlim=c(-30,5),ylim=c(-30,5))
abline(v=mean(cuechill0), col='grey', lty=2, lwd=2)

for(i in 1:length(cueforce0)){
lines(c(cuechillsdlow0[i],cuechillsdup0[i]),
rep(cuechill[i],2), col=adjustcolor(colschillpmm[i],0.2))
lines(rep(cuechill0[i],2),
c(cuechillsdlow[i],cuechillsdup[i]),
col=adjustcolor(colschillhmm[i],0.2))
}
points(cuechill0, cuechill,pch=16, col=adjustcolor(colschillpmm,0.4),cex=1.2)

abline(a=0,b=1, col='darkgrey', lty=2, lwd=1.5)
#abline(lm(cuechill~cuechill0), lwd=1.5)
mtext("a", side = 3, adj = 0.05,line=-2,cex=1.5)


colsforce <- virid(30)[as.numeric(cut(c(cueforce0, cueforce),breaks = 30))]
colsforcehmm <- colsforce[1:length(cueforce0)]
colsforcepmm <- colsforce[(length(cueforce0)+1):length(colsforce)]

plot(cueforce0, cueforce,
xlab="sensitivity to forcing HMM",
ylab="sensitivity to forcing PMM",
pch=16, col=adjustcolor(colsforcepmm,0.4),cex=1.2, cex.lab=1.5,
xlim=c(-20,5),ylim=c(-20,5))
abline(v=mean(cueforce0), col='grey', lty=2, lwd=2)

for(i in 1:length(cueforce0)){
lines(c(cueforcesdlow0[i],cueforcesdup0[i]),
rep(cueforce[i],2), col=adjustcolor(colsforcepmm[i],0.2))
lines(rep(cueforce0[i],2),
c(cueforcesdlow[i],cueforcesdup[i]),
col=adjustcolor(colsforcehmm[i],0.2))

}
points(cueforce0, cueforce,pch=16, col=adjustcolor(colsforcepmm,0.4),cex=1.2)

abline(a=0,b=1, col='darkgrey', lty=2, lwd=1.5)
#abline(lm(cueforce~cueforce0), lwd=1.5)
mtext("b", side = 3, adj = 0.05,line=-2,cex=1.5)

colsphoto <- virid(30)[as.numeric(cut(c(cuephoto0, cuephoto),breaks = 30))]
colsphotohmm <- colsphoto[1:length(cuephoto0)]
colsphotopmm <- colsphoto[(length(cuephoto0)+1):length(colsphoto)]

plot(cuephoto0, cuephoto,
xlab="sensitivity to photoperiod HMM",
ylab="sensitivity to photoperiod PMM",
pch=16, col=adjustcolor(colsphotohmm,0.4),cex=1.2, cex.lab=1.5,
xlim=c(-10,3),ylim=c(-10,3))
abline(v=mean(cuephoto0), col='grey', lty=2, lwd=2)

for(i in 1:length(cuephoto0)){
lines(c(cuephotosdlow0[i],cuephotosdup0[i]),
rep(cuephoto[i],2), col=adjustcolor(colsphotohmm[i],0.2))

lines(rep(cuephoto0[i],2),
c(cuephotosdlow[i],cuephotosdup[i]),
col=adjustcolor(colsphotohmm[i],0.2))
}
points(cuephoto0, cuephoto,pch=16, col=adjustcolor(colsphotopmm,0.4),cex=1.2)

abline(a=0,b=1, col='darkgrey', lty=2, lwd=1.5)
#abline(lm(cuephoto~cuephoto0), lwd=1.5)
mtext("c", side = 3, adj = 0.05,line=-2,cex=1.5)


}



# end ----

0 comments on commit 8202252

Please sign in to comment.