-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
42ccfb1
commit 8202252
Showing
2 changed files
with
293 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2020 Ignacio Morales-Castilla | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,272 @@ | ||
#'############################################################# | ||
#' Phylogenetic estimates of species-level phenology improve ecological forecasting | ||
#' | ||
#' * Script #1 Phylogenetic Mixed Model fitting | ||
#' | ||
#' | ||
#' by Morales-Castilla, I., et al. | ||
#' feb 2024 | ||
#'############################################################# | ||
|
||
|
||
## Runs (or reads) the phylogeny models, extracts some output | ||
## Does some basic plotting | ||
|
||
rm(list=ls()) | ||
options(stringsAsFactors = FALSE) | ||
|
||
# Setting working directory. Add in your own path in an if statement for your file structure | ||
setwd("~/your/local/address/") | ||
|
||
|
||
# Loading packages | ||
library(caper) | ||
library(pez) | ||
library(phytools) | ||
library(rstan) | ||
library(shinystan) | ||
library(plyr) | ||
library(dplyr) | ||
|
||
options(mc.cores = parallel::detectCores()) | ||
|
||
|
||
|
||
#'###################################### | ||
#### load data and phylogeny #### | ||
#'###################################### | ||
|
||
|
||
d = read.csv("data/ospreebbphyloms_forknb.csv") | ||
phylo = read.tree("data/phyloforphyloms.tre") | ||
|
||
|
||
|
||
|
||
|
||
#'################################### | ||
# Run the models #### | ||
#'################################### | ||
|
||
## Fit model here | ||
fitlambest <- stan("stan_code/PhenoPhyloMM_PMM.stan", | ||
data=list(N=nrow(d), | ||
n_sp=nspecies, | ||
sp=d$sppnum, | ||
x1=d$force.z, | ||
x2 = d$chill.z, | ||
x3=d$photo.z, | ||
y=d$resp, | ||
Vphy=vcv(phylo, corr = TRUE)), | ||
iter = 4000, | ||
warmup = 2000, # half the iter as warmp is default, but leaving in case we want to change | ||
chains = 4, | ||
seed = 117 | ||
) | ||
|
||
## Save fitted posterior | ||
saveRDS(fitlambest, "output/fit_model_PMM.rds") | ||
|
||
fitlamb0 <- stan("stan/PhenoPhyloMM_HMM.stan", | ||
data=list(N=nrow(d), | ||
n_sp=nspecies, | ||
sp=d$sppnum, | ||
x1=d$force.z, | ||
x2 = d$chill.z, | ||
x3=d$photo.z, | ||
y=d$resp, | ||
Vphy=vcv(phylo, corr = TRUE)), | ||
iter = 4000, | ||
warmup = 2000, | ||
chains = 4, | ||
seed = 117 | ||
) | ||
saveRDS(fitlamb0, "output/fit_model_HMM.rds") | ||
|
||
|
||
|
||
#'################################### | ||
# Explore model fit #### | ||
#'################################### | ||
|
||
## Summarize full fit | ||
# summary(fit)$summary | ||
|
||
## Summarize lambdas, b_zf, b_zc, , b_zp, intercept mean, and sigmas | ||
fitsum <- summary(fitlambest, pars = list("a_z", "sigma_interceptsa", | ||
"b_zf", "sigma_interceptsbf", "lam_interceptsbf", | ||
"b_zc", "sigma_interceptsbc", "lam_interceptsbc", | ||
"b_zp", "sigma_interceptsbp", "lam_interceptsbp","sigma_y"))$summary | ||
|
||
fitsumdf <- as.data.frame(fitsum) | ||
|
||
source("source/stan_utility.R") | ||
check_all_diagnostics(fitlambest) | ||
|
||
|
||
|
||
|
||
|
||
#'############################################### | ||
#### comparing estimates lambda est vs 1 vs 0 #### | ||
#'############################################### | ||
|
||
|
||
## load models | ||
|
||
|
||
|
||
## Summarize lambdas, b_zf, b_zc, , b_zp, intercept mean, and sigmas | ||
tableresults.0 = summary(fitlam0, pars = list("a_z", "sigma_interceptsa", "b_zf", "sigma_interceptsbf", "b_zc", "sigma_interceptsbc", "b_zp", "sigma_interceptsbp", "sigma_y"))$summary | ||
tableresults.est = summary(fitlambest, pars = list("a_z", "lam_interceptsa", "sigma_interceptsa", "b_zf", "lam_interceptsbf", "sigma_interceptsbf", "b_zc", "lam_interceptsbc", "sigma_interceptsbc", "b_zp", "lam_interceptsbp", "sigma_interceptsbp", "sigma_y"))$summary | ||
|
||
|
||
|
||
## rename model to include species names | ||
names(fitlambest)[grep(pattern = "^a\\[", x = names(fitlambest))] <- phylo$tip.label | ||
names(fitlambest)[grep(pattern = "^b_force", x = names(fitlambest))] <- phylo$tip.label | ||
names(fitlambest)[grep(pattern = "^b_chill", x = names(fitlambest))] <- phylo$tip.label | ||
names(fitlambest)[grep(pattern = "^b_photo", x = names(fitlambest))] <- phylo$tip.label | ||
|
||
names(fitlam0)[grep(pattern = "^a\\[", x = names(fitlam0))] <- phylo$tip.label | ||
names(fitlam0)[grep(pattern = "^b_force", x = names(fitlam0))] <- phylo$tip.label | ||
names(fitlam0)[grep(pattern = "^b_chill", x = names(fitlam0))] <- phylo$tip.label | ||
names(fitlam0)[grep(pattern = "^b_photo", x = names(fitlam0))] <- phylo$tip.label | ||
|
||
|
||
|
||
|
||
# get model estimates per species ---- | ||
|
||
## where species are | ||
|
||
posspsindata.est <- list(10:200,202:392,394:584) | ||
posspsindata.01 <- list(6:196,198:388,390:580) | ||
|
||
|
||
## forcing | ||
cueforce = summary(fitlambest)$summary[posspsindata.est[[1]],"mean"] | ||
cueforcesdup = summary(fitlambest)$summary[posspsindata.est[[1]],"75%"] | ||
cueforcesdlow = summary(fitlambest)$summary[posspsindata.est[[1]],"25%"] | ||
|
||
cueforce0 = summary(fitlam0)$summary[posspsindata.01[[1]],"mean"] | ||
cueforcesdup0 = summary(fitlam0)$summary[posspsindata.01[[1]],"75%"] | ||
cueforcesdlow0 = summary(fitlam0)$summary[posspsindata.01[[1]],"25%"] | ||
|
||
|
||
## chill | ||
cuechill = summary(fitlambest)$summary[posspsindata.est[[2]],"mean"] | ||
cuechillsdup = summary(fitlambest)$summary[posspsindata.est[[2]],"75%"] | ||
cuechillsdlow = summary(fitlambest)$summary[posspsindata.est[[2]],"25%"] | ||
|
||
cuechill0 = summary(fitlam0)$summary[posspsindata.01[[2]],"mean"] | ||
cuechillsdup0 = summary(fitlam0)$summary[posspsindata.01[[2]],"75%"] | ||
cuechillsdlow0 = summary(fitlam0)$summary[posspsindata.01[[2]],"25%"] | ||
|
||
|
||
## photo | ||
cuephoto = summary(fitlambest)$summary[posspsindata.est[[3]],"mean"] | ||
cuephotosdup = summary(fitlambest)$summary[posspsindata.est[[3]],"75%"] | ||
cuephotosdlow = summary(fitlambest)$summary[posspsindata.est[[3]],"25%"] | ||
|
||
cuephoto0 = summary(fitlam0)$summary[posspsindata.01[[3]],"mean"] | ||
cuephotosdup0 = summary(fitlam0)$summary[posspsindata.01[[3]],"75%"] | ||
cuephotosdlow0 = summary(fitlam0)$summary[posspsindata.01[[3]],"25%"] | ||
|
||
|
||
|
||
|
||
|
||
### plot correlations angio ---- | ||
plotting = F | ||
lambdazero = F | ||
|
||
if(plotting){ | ||
|
||
dev.off() | ||
par(mfrow=c(1,3)) | ||
|
||
virid <- colorRampPalette(c("yellow","darkcyan","purple")) | ||
|
||
colschill <- virid(30)[as.numeric(cut(c(cuechill0, cuechill),breaks = 30))] | ||
colschillhmm <- colschill[1:length(cuechill0)] | ||
colschillpmm <- colschill[(length(cuechill0)+1):length(colschill)] | ||
|
||
|
||
plot(cuechill0, cuechill, | ||
xlab="sensitivity to chilling HMM", | ||
ylab="sensitivity to chilling PMM", | ||
pch=16, col=adjustcolor(colschillpmm,0.4),cex=1.2, cex.lab=1.5, | ||
xlim=c(-30,5),ylim=c(-30,5)) | ||
abline(v=mean(cuechill0), col='grey', lty=2, lwd=2) | ||
|
||
for(i in 1:length(cueforce0)){ | ||
lines(c(cuechillsdlow0[i],cuechillsdup0[i]), | ||
rep(cuechill[i],2), col=adjustcolor(colschillpmm[i],0.2)) | ||
lines(rep(cuechill0[i],2), | ||
c(cuechillsdlow[i],cuechillsdup[i]), | ||
col=adjustcolor(colschillhmm[i],0.2)) | ||
} | ||
points(cuechill0, cuechill,pch=16, col=adjustcolor(colschillpmm,0.4),cex=1.2) | ||
|
||
abline(a=0,b=1, col='darkgrey', lty=2, lwd=1.5) | ||
#abline(lm(cuechill~cuechill0), lwd=1.5) | ||
mtext("a", side = 3, adj = 0.05,line=-2,cex=1.5) | ||
|
||
|
||
colsforce <- virid(30)[as.numeric(cut(c(cueforce0, cueforce),breaks = 30))] | ||
colsforcehmm <- colsforce[1:length(cueforce0)] | ||
colsforcepmm <- colsforce[(length(cueforce0)+1):length(colsforce)] | ||
|
||
plot(cueforce0, cueforce, | ||
xlab="sensitivity to forcing HMM", | ||
ylab="sensitivity to forcing PMM", | ||
pch=16, col=adjustcolor(colsforcepmm,0.4),cex=1.2, cex.lab=1.5, | ||
xlim=c(-20,5),ylim=c(-20,5)) | ||
abline(v=mean(cueforce0), col='grey', lty=2, lwd=2) | ||
|
||
for(i in 1:length(cueforce0)){ | ||
lines(c(cueforcesdlow0[i],cueforcesdup0[i]), | ||
rep(cueforce[i],2), col=adjustcolor(colsforcepmm[i],0.2)) | ||
lines(rep(cueforce0[i],2), | ||
c(cueforcesdlow[i],cueforcesdup[i]), | ||
col=adjustcolor(colsforcehmm[i],0.2)) | ||
|
||
} | ||
points(cueforce0, cueforce,pch=16, col=adjustcolor(colsforcepmm,0.4),cex=1.2) | ||
|
||
abline(a=0,b=1, col='darkgrey', lty=2, lwd=1.5) | ||
#abline(lm(cueforce~cueforce0), lwd=1.5) | ||
mtext("b", side = 3, adj = 0.05,line=-2,cex=1.5) | ||
|
||
colsphoto <- virid(30)[as.numeric(cut(c(cuephoto0, cuephoto),breaks = 30))] | ||
colsphotohmm <- colsphoto[1:length(cuephoto0)] | ||
colsphotopmm <- colsphoto[(length(cuephoto0)+1):length(colsphoto)] | ||
|
||
plot(cuephoto0, cuephoto, | ||
xlab="sensitivity to photoperiod HMM", | ||
ylab="sensitivity to photoperiod PMM", | ||
pch=16, col=adjustcolor(colsphotohmm,0.4),cex=1.2, cex.lab=1.5, | ||
xlim=c(-10,3),ylim=c(-10,3)) | ||
abline(v=mean(cuephoto0), col='grey', lty=2, lwd=2) | ||
|
||
for(i in 1:length(cuephoto0)){ | ||
lines(c(cuephotosdlow0[i],cuephotosdup0[i]), | ||
rep(cuephoto[i],2), col=adjustcolor(colsphotohmm[i],0.2)) | ||
|
||
lines(rep(cuephoto0[i],2), | ||
c(cuephotosdlow[i],cuephotosdup[i]), | ||
col=adjustcolor(colsphotohmm[i],0.2)) | ||
} | ||
points(cuephoto0, cuephoto,pch=16, col=adjustcolor(colsphotopmm,0.4),cex=1.2) | ||
|
||
abline(a=0,b=1, col='darkgrey', lty=2, lwd=1.5) | ||
#abline(lm(cuephoto~cuephoto0), lwd=1.5) | ||
mtext("c", side = 3, adj = 0.05,line=-2,cex=1.5) | ||
|
||
|
||
} | ||
|
||
|
||
|
||
# end ---- |