__ ( } __ __ _ _ __ __ _
'---. _`---, | \/ | | | (_) \ \ / / | |
___/ / | \ / | ___ | |_ _ ___ _ __ \ V / _ __ ___ _ __| |_
/,---'\\ | |\/| |/ _ \| __| |/ _ \| '_ \ > < | '_ \ / _ \ '__| __|
// | | | | (_) | |_| | (_) | | | |/ . \| |_) | __/ | | |_
'== |_| |_|\___/ \__|_|\___/|_| |_/_/ \_\ .__/ \___|_| \__|
| |
|_|
create and activate a virtual env
$ conda create -n motion2text python=3.7
$ conda activate motion2text
$ pip install -r requirements.txt
In case of installation of language_evaluation, you need to install from github source code
The template config file for pretrain :
TASK.PRETRAIN_SETTING
can choose to use STAGCN
or Attention
.
The first one is the implementation of Spatial Temporal Attention Graph Convolutional Networks with Mechanics-Stream for Skeleton-based and the second one is Ours implementation.
TASK.PRETRAIN_DIFFERENCE
can choose to be true
or false
.
If the TASK.PRETRAIN_DIFFERENCE
is true
, the model will use the difference information.
HIDDEN_CHANNEL: 32
OUT_CHANNEL: 128
TRANSFORMATION:
REDUCTION_POLICY: 'TIME_POOL'
TASK:
PRETRAIN: true
PRETRAIN_SETTING: 'Attention'
PRETRAIN_DIFFERENCE : true
DATA:
TRAIN: '{The PATH of the pretrain training dataset}'
TEST: '{The PATH of the pretrain testing dataset}'
BATCH_SIZE: 16
OPTIMIZER:
LR: 1e-4
MAX_EPOCH: 50
WARMUP_STEPS: 5000
BRANCH: 1
LOGDIR: ./results/pretrain
args:
eval_multi: false
The template config file for finetune :
HIDDEN_CHANNEL: 32
OUT_CHANNEL: 128
TRANSFORMATION:
REDUCTION_POLICY: 'TIME_POOL'
TASK:
PRETRAIN: false
PRETRAIN_SETTING: 'Attention'
PRETRAIN_DIFFERENCE : true
WEIGHT_PATH: '{The PATH of MotionExpert}/MotionExpert/results/pretrain/pretrain_checkpoints/checkpoint_epoch_00008.pth'
DATA:
TRAIN: '{The PATH of the finetune training dataset}'
TEST: '{The PATH of the finetune testing dataset}'
BATCH_SIZE: 16
OPTIMIZER:
LR: 1e-4
MAX_EPOCH: 50
WARMUP_STEPS: 5000
BRANCH: 1
LOGDIR: ./results/finetune
args:
eval_multi: false
Create the directory results
in the directory {The PATH of MotionExpert}/MotionExpert
.
Step 1 : create the pretrain
directory.
Step 2 : Put the config.yaml
(for example : The template config file for pretrain) pretrain
directory.
Step 3 : After pretrain, the pretrain_checkpoints
directory will be created automatically like the following :
Motion Expert
| - results
| - pretrain
| - pretrain_checkpoints
| - ...
| - config.yaml
For the users :
After suspending the training, it will continue training from the last epoch next time.
For the developers :
If you want to restart the whole training process, you need to delete whole pretrain_checkpoints
directory, otherwise it training from the last epoch next time.
Step 1 : create the finetune
directory.
Step 2 : create the pretrain_checkpoints
directory.
Step 3 : Put the pretrained checkpoint file (for example : checkpoint_epoch_00008.pth) in pretrain_checkpoints
directory.
Step 4 : Put the config.yaml
(for example : The template config file for finetune) finetune
directory.
Step 5 : After finetuning, the checkpoints
directory will be created automatically like the following :
Motion Expert
| - results
| - finetune
| - checkpoints
| ...
| - pretrain_checkpoints
| - checkpoint_epoch_00008.pth
| - config.yaml
Additionally, if you are finetuning from an existing checkpoint, you will have to further create a folder called pretrain_checkpoints, and put the desired checkpoint into that folder.
For the developers:
If you want to restart the whole training process, you need to delete whole checkpoints
directory, otherwise it training from the last epoch next time.
$ torchrun --nproc_per_node <specify_how_many_gpus_to_run> main.py --cfg_file <path_to_cfg_file>
or, if the above yield Error detected multiple processes in same device
$ python -m torch.distributed.launch --nproc_per_node <specify_how_many_gpus_to_run> main.py --cfg_file <path_to_cfg_file>
$ python -m torch.distributed.launch --nproc_per_node 1 main.py --cfg_file {The PATH of MotionExpert}/MotionExpert/results/pretrain/config.yaml
$ python -m torch.distributed.launch --nproc_per_node 1 main.py --cfg_file {The PATH of MotionExpert}/MotionExpert/results/finetune/config.yaml
We use VideoAlignment as our submodule to handle branch2 alignment code.
To clone the submodule, after you git clone
this repo, run the followings:
$ cd VideoAlignment
$ git submodule init
$ git submodule update
If you need to update the VideoAlignment Submodule branch wheh command git pull
$ git submodule update
$ git pull
$ CUDA_VISIBLE_DEVICES=6 torchrun --nproc_per_node=1 --master_port=29051 evaluation.py --cfg_file /home/andrewchen/MotionExpert_v2/MotionExpert/results/finetune_skeleton_boxing/config_err.yaml --ckpt /home/andrewchen/MotionExpert_v2/MotionExpert/results/finetune_skeleton_boxing/checkpoints/checkpoint_epoch_00020.pth > output/finetune_skeleton_boxing
$ CUDA_VISIBLE_DEVICES=6 torchrun --nproc_per_node=1 --master_port=29051 main.py --cfg_file ./results/finetune_joint_training/config.yaml > output/finetune_skeleton_skating
$ CUDA_VISIBLE_DEVICES=0 torchrun --nproc_per_node=1 --master_port=29051 evaluation.py --cfg_file ./results/finetune_joint_training/config.yaml --ckpt /home/weihsin/projects/MotionExpert/results/finetune_joint_training/checkpoints/checkpoint_epoch_00055.pth > output/finetune_skeleton_skating_eval
$ CUDA_VISIBLE_DEVICES=0 torchrun --nproc_per_node=1 --master_port=29051 evaluation.py --cfg_file ./home/weihsin/projects/MotionExpert/results/pretrain_skating/config.yaml --ckpt /home/weihsin/projects/MotionExpert/results/pretrainAttention_difference/pretrain_checkpoints/checkpoint_epoch_00009.pth > output/finetune_skeleton_skating_eval
- HybrIK: Hybrid Analytical-Neural Inverse Kinematics for Body Mesh Recovery
- Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition (STGCN)
- Spatio-Temporal adaptive graph convolutional network model (STAGCN)
- T5 model document
- BertViz - Visualize Attention in NLP Models
- Dynamic time warping
- CARL
- Temporal Cycle-Consistency Learning