├─ data # Data directory containing text and image data
├─ dataset # Module constructing Dataset class for iteration
├─ models # Main models directory
│ ├─ attentionModel
│ ├─ baseline
│ ├─ flava
├─ output # Output directory containing predicted files and relevant figures
├─ papers # Directory for storing relevant papers
├─ preprocess # Data preprocessing module
├─ test # Directory for testing
├─ .gitignore
├─ constant.py
├─ flava.ipynb # FLAVA model related file
├─ LICENSE
├─ main.py # Core file
├─ predict.sh # Prediction script
├─ README.md
├─ requirements.txt
├─ test_without_label.txt
├─ train.sh # Training script
├─ train.txt
├─ utils.py # Store Trainer and other utility functions
└─ __init__.py
-
Baseline
-
Cat: 65.00%
- only_img: 65.75%
- only_txt: 58.00%
-
Add: 65.00%
-
-
EncoderLayer: 63.38%
- For training, simply run:
bash train.sh
You can choose the model type and adjust other hyperparameters as needed.
- For prediction, run:
bash predict.sh
This script will generate the predictions and output files to the output/test.txt