Skip to content

Commit

Permalink
fix: 修复不规范错误
Browse files Browse the repository at this point in the history
  • Loading branch information
heacsing committed Jul 1, 2024
1 parent eb7867a commit 09c5432
Show file tree
Hide file tree
Showing 9 changed files with 92 additions and 40 deletions.
2 changes: 2 additions & 0 deletions .vscode/settings.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
{
}
67 changes: 57 additions & 10 deletions docs/kakomonn/kyoto_university/informatics/ist_202208_kiso_f1_1.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ tags:

## **Description**
<figure style="text-align:center;">
<img src="https://s2.loli.net/2024/06/27/KiB4xw9ncTDaLs7.png" width="480"/>
<img src="https://s2.loli.net/2024/06/27/KiB4xw9ncTDaLs7.png" width="640"/>
</figure>

## **Kai**
Expand Down Expand Up @@ -53,6 +53,7 @@ I^2 = -E \Rightarrow I^{-1} =
0 & 0 & -1 & 0 \\
\end{bmatrix}
$$

$$
Q\bar{Q} = (a^2+b^2+c^2+d^2)E \Rightarrow Q^{-1} = \frac{1}{a^2+b^2+c^2+d^2}
\begin{bmatrix}
Expand All @@ -64,13 +65,59 @@ Q\bar{Q} = (a^2+b^2+c^2+d^2)E \Rightarrow Q^{-1} = \frac{1}{a^2+b^2+c^2+d^2}
$$

#### (3)

The complete proving is to use $(a, b, c, d)$ to represent all the $Q$s below with their calculations, which is easy but tedious.
- (a) $$\forall Q_1, Q_2 \in H, Q_1 + Q_2 \in H$$
- (b) $$\forall Q_1, Q_2 \in H, Q_1 + Q_2 = Q_2 + Q_1$$
- (c) $$\forall Q_1, Q_2, Q_3 \in H, (Q_1 + Q_2) + Q_3 = Q_1 + (Q_2 + Q_3) $$
- (d) $$\exist Q_0 \in H, \forall Q \in H, Q_0 + Q = Q$$
- (e) $$\forall Q \in H, \exist \hat{Q} \in H, Q + Q^ = Q_0$$
- (f) $$\forall Q_1, Q_2 \in H, Q_1Q_2 \in H$$
- (g) $$\forall Q_1, Q_2, Q_3 \in H, (Q_1Q_2)Q_3 = Q_1(Q_2Q_3)$$
- (h) $$\forall Q_1, Q_2, Q_3 \in H, (Q_1 + Q_2)Q_3 = Q_1Q_3 + Q_2Q_3$$
- (i) $$\exist Q_1, Q_2 \in H, Q_1Q_2 \neq Q_2Q_1$$

- (a)

$$
\forall Q_1, Q_2 \in H, Q_1 + Q_2 \in H
$$

- (b)

$$
\forall Q_1, Q_2 \in H, Q_1 + Q_2 = Q_2 + Q_1
$$

- (c\)

$$
\forall Q_1, Q_2, Q_3 \in H, (Q_1 + Q_2) + Q_3 = Q_1 + (Q_2 + Q_3)
$$

- (d)

$$
\exists Q_0 \in H, \forall Q \in H, Q_0 + Q = Q
$$

- (e)

$$
\forall Q \in H, \exists \hat{Q} \in H, Q + Q^ = Q_0
$$

- (f)

$$
\forall Q_1, Q_2 \in H, Q_1Q_2 \in H
$$

- (g)

$$
\forall Q_1, Q_2, Q_3 \in H, (Q_1Q_2)Q_3 = Q_1(Q_2Q_3)
$$

- (h)

$$
\forall Q_1, Q_2, Q_3 \in H, (Q_1 + Q_2)Q_3 = Q_1Q_3 + Q_2Q_3
$$

- (i)

$$
\exists Q_1, Q_2 \in H, Q_1Q_2 \neq Q_2Q_1
$$
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ tags:

## **Description**
<figure style="text-align:center;">
<img src="https://s2.loli.net/2024/06/27/fSDUupmWIkTFJr5.png" width="480"/>
<img src="https://s2.loli.net/2024/06/27/fSDUupmWIkTFJr5.png" width="640"/>
</figure>

## **Kai**
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ tags:


<figure style="text-align:center;">
<img src="https://s2.loli.net/2024/06/28/gpkQ9sXUD6iECKt.png" width="480"/>
<img src="https://s2.loli.net/2024/06/28/gpkQ9sXUD6iECKt.png" width="640"/>
</figure>


Expand All @@ -28,7 +28,7 @@ tags:
#### (1)

<figure style="text-align:center;">
<img src="https://s2.loli.net/2024/06/28/XrRkah9u1AYnbU6.png" width="480"/>
<img src="https://s2.loli.net/2024/06/28/XrRkah9u1AYnbU6.png" width="640"/>
</figure>

#### (2)
Expand Down
44 changes: 22 additions & 22 deletions docs/kakomonn/kyoto_university/informatics/ist_202208_kiso_f2_2.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,10 +13,10 @@ tags:


<figure style="text-align:center;">
<img src="https://s2.loli.net/2024/06/28/udKwDh7LaJgM6qs.png" width="480"/>
<img src="https://s2.loli.net/2024/06/28/udKwDh7LaJgM6qs.png" width="640"/>
</figure>
<figure style="text-align:center;">
<img src="https://s2.loli.net/2024/06/28/YXyKcf9bNxpU47Q.png" width="480"/>
<img src="https://s2.loli.net/2024/06/28/YXyKcf9bNxpU47Q.png" width="640"/>
</figure>

## **Kai**
Expand All @@ -38,35 +38,35 @@ So, there must not be a cycle in a shortest path.

### (3)

1. Assume $k=1$ and insert it into $\delta(i, k, k-1)+\delta(k, j, k-1)$, we have:
1\. Assume $k=1$ and insert it into $\delta(i, k, k-1)+\delta(k, j, k-1)$, we have:

$$
\delta(i, 1, 0)+\delta(1, j, 0) = l(i, 1)+l(1,j)
$$
$$
\delta(i, 1, 0)+\delta(1, j, 0) = l(i, 1)+l(1,j)
$$

Obviously, compare $l(i, 1) + l(1,j)$ with $\delta(i, j, 0) = l(i, j)$, and we immediately have the shortest path from $i$ to $j$ through $k=1$, which means:
Obviously, compare $l(i, 1) + l(1,j)$ with $\delta(i, j, 0) = l(i, j)$, and we immediately have the shortest path from $i$ to $j$ through $k=1$, which means:

$$
\delta(i, j, 1)=min\{\delta(i,j,0), \delta(i, 1, 0)+\delta(1, j, 0)\}
$$
$$
\delta(i, j, 1)=min\{\delta(i,j,0), \delta(i, 1, 0)+\delta(1, j, 0)\}
$$

2. Assume that when $k=k_0$, we have:
2\. Assume that when $k=k_0$, we have:

$$
\delta(i, j, k_0)=min\{\delta(i,j,k_0-1), \delta(i, k_0, k_0-1)+\delta(k_0, j, k_0-1)\}
$$
$$
\delta(i, j, k_0)=min\{\delta(i,j,k_0-1), \delta(i, k_0, k_0-1)+\delta(k_0, j, k_0-1)\}
$$

And for $k=k_0+1$, consider
And for $k=k_0+1$, consider

$$
\delta(i, k_0+1, k_0)+\delta(k_0+1, j, k_0)
$$
$$
\delta(i, k_0+1, k_0)+\delta(k_0+1, j, k_0)
$$

which introduces a new vertice $k_0+1$ and gives **the shortest path that must go through** $k_0+1$. Thus, compare it to $\delta(i, j, k_0)$, which is the shortest path from $i$ to $j$ that must not considering $k_0+1$, we immediately have the shortest path from $i$ to $j$ that considers $k_0 + 1$. That being said,
which introduces a new vertice $k_0+1$ and gives **the shortest path that must go through** $k_0+1$. Thus, compare it to $\delta(i, j, k_0)$, which is the shortest path from $i$ to $j$ that must not considering $k_0+1$, we immediately have the shortest path from $i$ to $j$ that considers $k_0 + 1$. That being said,

$$
\delta(i,j,k_0+1)=min\{\delta(i,j,k_0), \delta(i, k_0+1, k_0)+\delta(k_0+1, j, k_0)\}
$$
$$
\delta(i,j,k_0+1)=min\{\delta(i,j,k_0), \delta(i, k_0+1, k_0)+\delta(k_0+1, j, k_0)\}
$$

Combine *1* and *2*, we can draw the conlusion that the asked formula is proved true.

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ tags:

## **Description**
<figure style="text-align:center;">
<img src="https://s2.loli.net/2024/07/01/gXipzcs9QeadjOU.png" width="480"/>
<img src="https://s2.loli.net/2024/07/01/gXipzcs9QeadjOU.png" width="640"/>
</figure>


Expand Down Expand Up @@ -46,6 +46,7 @@ By the Binomial Theorem, we can insert $\sum^{z}_{i=0}\frac{z!}{(z-i)!i!}\lambda
$$
f_{Z}(z) = \frac{e^{-(\lambda_1 + \lambda_2)}}{z!}(\lambda_1 + \lambda_2)^z
$$

So is the PMF for a Poisson Distribution with the parameter $(\lambda_1 + \lambda_2)$

**PS**: A easier solution is to use Moments Generating Function.
Expand Down Expand Up @@ -130,7 +131,8 @@ $$
\end{align}
$$

Insert the values, the answer is
Insert the values, the answer is

$$
Pr[T|S^2] = \frac{128}{133}
$$
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ tags:

## **Description**
<figure style="text-align:center;">
<img src="https://s2.loli.net/2024/07/01/7wrBFAyl6jYgT8k.png" width="480"/>
<img src="https://s2.loli.net/2024/07/01/7wrBFAyl6jYgT8k.png" width="640"/>
</figure>


Expand All @@ -35,6 +35,7 @@ For the same reason, we propose the solution
$$
S_2 = \{000, 001, 010, 101, 100\}
$$

while the transition diagram is

<figure style="text-align:center;">
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ tags:

## **Description**
<figure style="text-align:center;">
<img src="https://s2.loli.net/2024/06/26/atJ2ghTnPMlXucW.png" width="480"/>
<img src="https://s2.loli.net/2024/06/26/atJ2ghTnPMlXucW.png" width="640"/>
</figure>


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ tags:

## **Description**
<figure style="text-align:center;">
<img src="https://s2.loli.net/2024/06/26/gWhJczvi4enyYFx.png" width="480"/>
<img src="https://s2.loli.net/2024/06/26/gWhJczvi4enyYFx.png" width="640"/>
</figure>


Expand Down

0 comments on commit 09c5432

Please sign in to comment.