Skip to content

Commit

Permalink
東京大学 新領域創成科学研究科 メディカル情報生命専攻 2017年8月実施 問題8
Browse files Browse the repository at this point in the history
  • Loading branch information
Myyura committed Feb 1, 2025
1 parent dce7777 commit d8340e5
Show file tree
Hide file tree
Showing 3 changed files with 145 additions and 0 deletions.
143 changes: 143 additions & 0 deletions docs/kakomonn/tokyo_university/frontier_sciences/cbms_201708_8.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,143 @@
---
comments: false
title: 東京大学 新領域創成科学研究科 メディカル情報生命専攻 2017年8月実施 問題8
tags:
- Tokyo-University
- Linear-Algebra
---

# 東京大学 新領域創成科学研究科 メディカル情報生命専攻 2017年8月実施 問題8

## **Author**
[zephyr](https://inshi-notes.zephyr-zdz.space/)

## **Description**
Let $\mathbf{A}$ be an $n \times m$ real matrix with positive rank $r$. Such a matrix has a singular value decomposition $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$, where $\mathbf{U}$ and $\mathbf{V}$ are $n \times r$, $m \times r$ real matrices, respectively, and satisfy $\mathbf{U}^T \mathbf{U} = \mathbf{I}_r$, $\mathbf{V}^T \mathbf{V} = \mathbf{I}_r$ ($\mathbf{I}_d$: $d \times d$ unit matrix, $\mathbf{M}^T$: transpose of matrix $\mathbf{M}$). $\mathbf{\Sigma}$ is an $r \times r$ real diagonal matrix whose diagonal elements $\Sigma_{kk} = \sigma_k$ ($k = 1, \ldots, r$) satisfy $\sigma_1 \geq \cdots \geq \sigma_r > 0$.

(1) Describe all the positive eigenvalues and associated normalized eigenvectors of matrix $\mathbf{A}^T \mathbf{A}$.

(2) Let $T_{\mathbf{A}}: \mathbb{R}^m \to \mathbb{R}^n$ be a linear mapping defined by $T_{\mathbf{A}} (\mathbf{x}) = \mathbf{A} \mathbf{x}$. Describe the conditions on $n, m, r$ such that $T_{\mathbf{A}}$ is surjective. Also, describe the conditions on $n, m, r$ such that $T_{\mathbf{A}}$ is injective.

(3) The pseudoinverse of $\mathbf{A}$ is defined by $\mathbf{A}^+ = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^T$. Let $\mathbf{B} = (\mathbf{I}_m - \mathbf{A}^+ \mathbf{A})$ and define linear mapping $T_{\mathbf{B}}: \mathbb{R}^m \to \mathbb{R}^m$ by $T_{\mathbf{B}} (\mathbf{x}) = \mathbf{B} \mathbf{x}$. Show that image $\mathrm{Im}(T_{\mathbf{B}}) = \{\mathbf{B} \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^m\}$ is linearly isomorphic to kernel $\mathrm{Ker}(T_{\mathbf{A}}) = \{\mathbf{x} \in \mathbb{R}^m \mid \mathbf{A} \mathbf{x} = \mathbf{0}_d\}$ ($\mathbf{0}_d$: $d$ dimensional zero vector).

(4) Show that $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$ ($\mathbf{x}_1 = \mathbf{B} \mathbf{x}$, $\mathbf{x}_2 = (\mathbf{x} - \mathbf{x}_1)$) is an orthogonal decomposition.

(5) For a given $\mathbf{b} \in \mathbb{R}^n$, let $\mathbf{x}_0 = \mathbf{A}^+ \mathbf{b} \in \mathbb{R}^m$. Show that $\mathbf{x} = \mathbf{x}_0$ minimizes $(\mathbf{A} \mathbf{x} - \mathbf{b})^T (\mathbf{A} \mathbf{x} - \mathbf{b})$.
(Hint: $\mathbf{A} \mathbf{x} - \mathbf{b} = \mathbf{A} (\mathbf{x} - \mathbf{x}_0) + (\mathbf{A} \mathbf{x}_0 - \mathbf{b})$)

---

设 $\mathbf{A}$ 为一个 $n \times m$ 的实矩阵,且正秩为 $r$。这样的矩阵有一个奇异值分解 $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$,其中 $\mathbf{U}$ 和 $\mathbf{V}$ 分别是 $n \times r$、$m \times r$ 的实矩阵,并且满足 $\mathbf{U}^T \mathbf{U} = \mathbf{I}_r$,$\mathbf{V}^T \mathbf{V} = \mathbf{I}_r$($\mathbf{I}_d$:$d \times d$ 单位矩阵,$\mathbf{M}^T$:矩阵 $\mathbf{M}$ 的转置)。$\mathbf{\Sigma}$ 是一个 $r \times r$ 的实对角矩阵,其对角元素 $\Sigma_{kk} = \sigma_k$($k = 1, \ldots, r$)满足 $\sigma_1 \geq \cdots \geq \sigma_r > 0$。

(1) 描述矩阵 $\mathbf{A}^T \mathbf{A}$ 的所有正特征值和相关的归一化特征向量。

(2) 令 $T_{\mathbf{A}}: \mathbb{R}^m \to \mathbb{R}^n$ 为由 $T_{\mathbf{A}} (\mathbf{x}) = \mathbf{A} \mathbf{x}$ 定义的线性映射。描述 $n, m, r$ 的条件,使得 $T_{\mathbf{A}}$ 是满射。同时,描述 $n, m, r$ 的条件,使得 $T_{\mathbf{A}}$ 是单射。

(3) $\mathbf{A}$ 的伪逆定义为 $\mathbf{A}^+ = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^T$。令 $\mathbf{B} = (\mathbf{I}_m - \mathbf{A}^+ \mathbf{A})$ 并定义线性映射 $T_{\mathbf{B}}: \mathbb{R}^m \to \mathbb{R}^m$ 由 $T_{\mathbf{B}} (\mathbf{x}) = \mathbf{B} \mathbf{x}$。证明 $\mathrm{Im}(T_{\mathbf{B}}) = \{\mathbf{B} \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^m\}$ 在线性上同构于 $\mathrm{Ker}(T_{\mathbf{A}}) = \{\mathbf{x} \in \mathbb{R}^m \mid \mathbf{A} \mathbf{x} = \mathbf{0}_d\}$($\mathbf{0}_d$:$d$ 维零向量)。

(4) 证明 $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$($\mathbf{x}_1 = \mathbf{B} \mathbf{x}$,$\mathbf{x}_2 = (\mathbf{x} - \mathbf{x}_1)$)是一个正交分解。

(5) 对于给定的 $\mathbf{b} \in \mathbb{R}^n$,令 $\mathbf{x}_0 = \mathbf{A}^+ \mathbf{b} \in \mathbb{R}^m$。证明 $\mathbf{x} = \mathbf{x}_0$ 最小化 $(\mathbf{A} \mathbf{x} - \mathbf{b})^T (\mathbf{A} \mathbf{x} - \mathbf{b})$。
(提示:$\mathbf{A} \mathbf{x} - \mathbf{b} = \mathbf{A} (\mathbf{x} - \mathbf{x}_0) + (\mathbf{A} \mathbf{x}_0 - \mathbf{b})$)

## **Kai**
### (1)

Given the singular value decomposition (SVD) of $\mathbf{A}$ as $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$, we can express $\mathbf{A}^T \mathbf{A}$ as follows:

$$
\mathbf{A}^T \mathbf{A} = (\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T)^T (\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T) = \mathbf{V} \mathbf{\Sigma}^T \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T
$$

The matrix $\mathbf{\Sigma}^2$ is diagonal with the diagonal elements $\sigma_k^2$ ($k = 1, \ldots, r$). Thus, the positive eigenvalues of $\mathbf{A}^T \mathbf{A}$ are exactly the $\sigma_k^2$, and the associated normalized eigenvectors are the columns of $\mathbf{V}$.

### (2)

**Surjective (onto)**:
The mapping $T_{\mathbf{A}}: \mathbb{R}^m \to \mathbb{R}^n$ is surjective if the range of $\mathbf{A}$ spans $\mathbb{R}^n$, i.e., $\mathbf{A}$ has full row rank. This occurs when $r = n \leq m$.

**Injective (one-to-one)**:
The mapping $T_{\mathbf{A}}$ is injective if the kernel of $\mathbf{A}$ contains only the zero vector, i.e., $\mathbf{A}$ has full column rank. This occurs when $r = m \leq n$.

### (3)

The pseudoinverse $\mathbf{A}^+$ is defined as $\mathbf{A}^+ = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^T$. Consider $\mathbf{B} = \mathbf{I}_m - \mathbf{A}^+ \mathbf{A}$.

We need to show that $\mathrm{Im}(T_{\mathbf{B}})$ is isomorphic to $\mathrm{Ker}(T_{\mathbf{A}})$. Observe the following:

$$
\mathbf{B} \mathbf{A} = (\mathbf{I}_m - \mathbf{A}^+ \mathbf{A}) \mathbf{A} = \mathbf{A} - \mathbf{A}^+ \mathbf{A} \mathbf{A} = \mathbf{A} - \mathbf{A} = \mathbf{0}
$$

Thus, $\mathrm{Im}(\mathbf{B}) \subseteq \mathrm{Ker}(\mathbf{A})$.

Now, consider $\mathbf{x} \in \mathrm{Ker}(\mathbf{A})$. Then $\mathbf{A} \mathbf{x} = \mathbf{0}$, and

$$
\mathbf{B} \mathbf{x} = (\mathbf{I}_m - \mathbf{A}^+ \mathbf{A}) \mathbf{x} = \mathbf{x}
$$

Thus, $\mathbf{x} \in \mathrm{Im}(\mathbf{B})$. Therefore, $\mathrm{Im}(\mathbf{B}) = \mathrm{Ker}(\mathbf{A})$.

### (4)

Given $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$ where $\mathbf{x}_1 = \mathbf{B} \mathbf{x}$ and $\mathbf{x}_2 = \mathbf{x} - \mathbf{x}_1$:

$$
\mathbf{x}_2 = \mathbf{x} - \mathbf{B} \mathbf{x} = \mathbf{x} - (\mathbf{I}_m - \mathbf{A}^+ \mathbf{A}) \mathbf{x} = \mathbf{A}^+ \mathbf{A} \mathbf{x}
$$

To show orthogonality:

$$
\mathbf{x}_1^T \mathbf{x}_2 = (\mathbf{B} \mathbf{x})^T (\mathbf{A}^+ \mathbf{A} \mathbf{x}) = \mathbf{x}^T \mathbf{B}^T \mathbf{A}^+ \mathbf{A} \mathbf{x}
$$

Since $\mathbf{B}$ is symmetric ($\mathbf{B} = \mathbf{I}_m - \mathbf{A}^+ \mathbf{A}$):

$$
\mathbf{x}^T (\mathbf{I}_m - \mathbf{A}^+ \mathbf{A}) \mathbf{A}^+ \mathbf{A} \mathbf{x} = \mathbf{x}^T (\mathbf{A}^+ \mathbf{A} - \mathbf{A}^+ \mathbf{A}) \mathbf{x} = \mathbf{0}
$$

Thus, $\mathbf{x}_1$ and $\mathbf{x}_2$ are orthogonal.

### (5)

Let $\mathbf{x}_0 = \mathbf{A}^+ \mathbf{b}$. We need to show that $\mathbf{x} = \mathbf{x}_0$ minimizes the expression.

Consider the error:

$$
\mathbf{A} \mathbf{x} - \mathbf{b} = \mathbf{A} (\mathbf{x} - \mathbf{x}_0) + (\mathbf{A} \mathbf{x}_0 - \mathbf{b})
$$

Since $\mathbf{x}_0 = \mathbf{A}^+ \mathbf{b}$, we have $\mathbf{A} \mathbf{x}_0 = \mathbf{b}$, thus:

$$
\mathbf{A} \mathbf{x} - \mathbf{b} = \mathbf{A} (\mathbf{x} - \mathbf{x}_0)
$$

The norm to be minimized is:

$$
(\mathbf{A} \mathbf{x} - \mathbf{b})^T (\mathbf{A} \mathbf{x} - \mathbf{b}) = (\mathbf{A} (\mathbf{x} - \mathbf{x}_0))^T (\mathbf{A} (\mathbf{x} - \mathbf{x}_0))
$$

This is minimized when $\mathbf{x} = \mathbf{x}_0$ since $\mathbf{A} \mathbf{x}_0 = \mathbf{b}$ and $\mathbf{A} (\mathbf{x} - \mathbf{x}_0) = \mathbf{0}$.

## **Knowledge**

奇异值分解 线性映射 广义逆矩阵 正交分解 线性代数

### 重点词汇

- singular value decomposition (SVD) 奇异值分解
- pseudoinverse 广义逆
- surjective 满射
- injective 单射
- orthogonal decomposition 正交分解

### 参考资料

1. "Linear Algebra and Its Applications" by Gilbert Strang, Chapter 7: The Singular Value Decomposition (SVD)
2. "Matrix Computations" by Gene H. Golub and Charles F. Van Loan, Chapter 2: Matrix Analysis
1 change: 1 addition & 0 deletions docs/kakomonn/tokyo_university/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -255,6 +255,7 @@ tags:
- [8月 問題12](frontier_sciences/cbms_201808_12.md)
- 2018年度:
- [8月 問題7](frontier_sciences/cbms_201708_7.md)
- [8月 問題8](frontier_sciences/cbms_201708_8.md)
- 海洋技術環境学専攻:
- 2022年度:
- [第1~6問](frontier_sciences/otpe_2022_all.md)
Expand Down
1 change: 1 addition & 0 deletions mkdocs.yml
Original file line number Diff line number Diff line change
Expand Up @@ -376,6 +376,7 @@ nav:
- 8月 問題12: kakomonn/tokyo_university/frontier_sciences/cbms_201808_12.md
- 2018年度:
- 8月 問題7: kakomonn/tokyo_university/frontier_sciences/cbms_201708_7.md
- 8月 問題8: kakomonn/tokyo_university/frontier_sciences/cbms_201708_8.md
- 海洋技術環境学専攻:
- 2022年度:
- 第1~6問: kakomonn/tokyo_university/frontier_sciences/otpe_2022_all.md
Expand Down

0 comments on commit d8340e5

Please sign in to comment.