-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
東京大学 新領域創成科学研究科 メディカル情報生命専攻 2017年8月実施 問題8
- Loading branch information
Showing
3 changed files
with
145 additions
and
0 deletions.
There are no files selected for viewing
143 changes: 143 additions & 0 deletions
143
docs/kakomonn/tokyo_university/frontier_sciences/cbms_201708_8.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
--- | ||
comments: false | ||
title: 東京大学 新領域創成科学研究科 メディカル情報生命専攻 2017年8月実施 問題8 | ||
tags: | ||
- Tokyo-University | ||
- Linear-Algebra | ||
--- | ||
|
||
# 東京大学 新領域創成科学研究科 メディカル情報生命専攻 2017年8月実施 問題8 | ||
|
||
## **Author** | ||
[zephyr](https://inshi-notes.zephyr-zdz.space/) | ||
|
||
## **Description** | ||
Let $\mathbf{A}$ be an $n \times m$ real matrix with positive rank $r$. Such a matrix has a singular value decomposition $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$, where $\mathbf{U}$ and $\mathbf{V}$ are $n \times r$, $m \times r$ real matrices, respectively, and satisfy $\mathbf{U}^T \mathbf{U} = \mathbf{I}_r$, $\mathbf{V}^T \mathbf{V} = \mathbf{I}_r$ ($\mathbf{I}_d$: $d \times d$ unit matrix, $\mathbf{M}^T$: transpose of matrix $\mathbf{M}$). $\mathbf{\Sigma}$ is an $r \times r$ real diagonal matrix whose diagonal elements $\Sigma_{kk} = \sigma_k$ ($k = 1, \ldots, r$) satisfy $\sigma_1 \geq \cdots \geq \sigma_r > 0$. | ||
|
||
(1) Describe all the positive eigenvalues and associated normalized eigenvectors of matrix $\mathbf{A}^T \mathbf{A}$. | ||
|
||
(2) Let $T_{\mathbf{A}}: \mathbb{R}^m \to \mathbb{R}^n$ be a linear mapping defined by $T_{\mathbf{A}} (\mathbf{x}) = \mathbf{A} \mathbf{x}$. Describe the conditions on $n, m, r$ such that $T_{\mathbf{A}}$ is surjective. Also, describe the conditions on $n, m, r$ such that $T_{\mathbf{A}}$ is injective. | ||
|
||
(3) The pseudoinverse of $\mathbf{A}$ is defined by $\mathbf{A}^+ = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^T$. Let $\mathbf{B} = (\mathbf{I}_m - \mathbf{A}^+ \mathbf{A})$ and define linear mapping $T_{\mathbf{B}}: \mathbb{R}^m \to \mathbb{R}^m$ by $T_{\mathbf{B}} (\mathbf{x}) = \mathbf{B} \mathbf{x}$. Show that image $\mathrm{Im}(T_{\mathbf{B}}) = \{\mathbf{B} \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^m\}$ is linearly isomorphic to kernel $\mathrm{Ker}(T_{\mathbf{A}}) = \{\mathbf{x} \in \mathbb{R}^m \mid \mathbf{A} \mathbf{x} = \mathbf{0}_d\}$ ($\mathbf{0}_d$: $d$ dimensional zero vector). | ||
|
||
(4) Show that $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$ ($\mathbf{x}_1 = \mathbf{B} \mathbf{x}$, $\mathbf{x}_2 = (\mathbf{x} - \mathbf{x}_1)$) is an orthogonal decomposition. | ||
|
||
(5) For a given $\mathbf{b} \in \mathbb{R}^n$, let $\mathbf{x}_0 = \mathbf{A}^+ \mathbf{b} \in \mathbb{R}^m$. Show that $\mathbf{x} = \mathbf{x}_0$ minimizes $(\mathbf{A} \mathbf{x} - \mathbf{b})^T (\mathbf{A} \mathbf{x} - \mathbf{b})$. | ||
(Hint: $\mathbf{A} \mathbf{x} - \mathbf{b} = \mathbf{A} (\mathbf{x} - \mathbf{x}_0) + (\mathbf{A} \mathbf{x}_0 - \mathbf{b})$) | ||
|
||
--- | ||
|
||
设 $\mathbf{A}$ 为一个 $n \times m$ 的实矩阵,且正秩为 $r$。这样的矩阵有一个奇异值分解 $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$,其中 $\mathbf{U}$ 和 $\mathbf{V}$ 分别是 $n \times r$、$m \times r$ 的实矩阵,并且满足 $\mathbf{U}^T \mathbf{U} = \mathbf{I}_r$,$\mathbf{V}^T \mathbf{V} = \mathbf{I}_r$($\mathbf{I}_d$:$d \times d$ 单位矩阵,$\mathbf{M}^T$:矩阵 $\mathbf{M}$ 的转置)。$\mathbf{\Sigma}$ 是一个 $r \times r$ 的实对角矩阵,其对角元素 $\Sigma_{kk} = \sigma_k$($k = 1, \ldots, r$)满足 $\sigma_1 \geq \cdots \geq \sigma_r > 0$。 | ||
|
||
(1) 描述矩阵 $\mathbf{A}^T \mathbf{A}$ 的所有正特征值和相关的归一化特征向量。 | ||
|
||
(2) 令 $T_{\mathbf{A}}: \mathbb{R}^m \to \mathbb{R}^n$ 为由 $T_{\mathbf{A}} (\mathbf{x}) = \mathbf{A} \mathbf{x}$ 定义的线性映射。描述 $n, m, r$ 的条件,使得 $T_{\mathbf{A}}$ 是满射。同时,描述 $n, m, r$ 的条件,使得 $T_{\mathbf{A}}$ 是单射。 | ||
|
||
(3) $\mathbf{A}$ 的伪逆定义为 $\mathbf{A}^+ = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^T$。令 $\mathbf{B} = (\mathbf{I}_m - \mathbf{A}^+ \mathbf{A})$ 并定义线性映射 $T_{\mathbf{B}}: \mathbb{R}^m \to \mathbb{R}^m$ 由 $T_{\mathbf{B}} (\mathbf{x}) = \mathbf{B} \mathbf{x}$。证明 $\mathrm{Im}(T_{\mathbf{B}}) = \{\mathbf{B} \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^m\}$ 在线性上同构于 $\mathrm{Ker}(T_{\mathbf{A}}) = \{\mathbf{x} \in \mathbb{R}^m \mid \mathbf{A} \mathbf{x} = \mathbf{0}_d\}$($\mathbf{0}_d$:$d$ 维零向量)。 | ||
|
||
(4) 证明 $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$($\mathbf{x}_1 = \mathbf{B} \mathbf{x}$,$\mathbf{x}_2 = (\mathbf{x} - \mathbf{x}_1)$)是一个正交分解。 | ||
|
||
(5) 对于给定的 $\mathbf{b} \in \mathbb{R}^n$,令 $\mathbf{x}_0 = \mathbf{A}^+ \mathbf{b} \in \mathbb{R}^m$。证明 $\mathbf{x} = \mathbf{x}_0$ 最小化 $(\mathbf{A} \mathbf{x} - \mathbf{b})^T (\mathbf{A} \mathbf{x} - \mathbf{b})$。 | ||
(提示:$\mathbf{A} \mathbf{x} - \mathbf{b} = \mathbf{A} (\mathbf{x} - \mathbf{x}_0) + (\mathbf{A} \mathbf{x}_0 - \mathbf{b})$) | ||
|
||
## **Kai** | ||
### (1) | ||
|
||
Given the singular value decomposition (SVD) of $\mathbf{A}$ as $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$, we can express $\mathbf{A}^T \mathbf{A}$ as follows: | ||
|
||
$$ | ||
\mathbf{A}^T \mathbf{A} = (\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T)^T (\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T) = \mathbf{V} \mathbf{\Sigma}^T \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T | ||
$$ | ||
|
||
The matrix $\mathbf{\Sigma}^2$ is diagonal with the diagonal elements $\sigma_k^2$ ($k = 1, \ldots, r$). Thus, the positive eigenvalues of $\mathbf{A}^T \mathbf{A}$ are exactly the $\sigma_k^2$, and the associated normalized eigenvectors are the columns of $\mathbf{V}$. | ||
|
||
### (2) | ||
|
||
**Surjective (onto)**: | ||
The mapping $T_{\mathbf{A}}: \mathbb{R}^m \to \mathbb{R}^n$ is surjective if the range of $\mathbf{A}$ spans $\mathbb{R}^n$, i.e., $\mathbf{A}$ has full row rank. This occurs when $r = n \leq m$. | ||
|
||
**Injective (one-to-one)**: | ||
The mapping $T_{\mathbf{A}}$ is injective if the kernel of $\mathbf{A}$ contains only the zero vector, i.e., $\mathbf{A}$ has full column rank. This occurs when $r = m \leq n$. | ||
|
||
### (3) | ||
|
||
The pseudoinverse $\mathbf{A}^+$ is defined as $\mathbf{A}^+ = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^T$. Consider $\mathbf{B} = \mathbf{I}_m - \mathbf{A}^+ \mathbf{A}$. | ||
|
||
We need to show that $\mathrm{Im}(T_{\mathbf{B}})$ is isomorphic to $\mathrm{Ker}(T_{\mathbf{A}})$. Observe the following: | ||
|
||
$$ | ||
\mathbf{B} \mathbf{A} = (\mathbf{I}_m - \mathbf{A}^+ \mathbf{A}) \mathbf{A} = \mathbf{A} - \mathbf{A}^+ \mathbf{A} \mathbf{A} = \mathbf{A} - \mathbf{A} = \mathbf{0} | ||
$$ | ||
|
||
Thus, $\mathrm{Im}(\mathbf{B}) \subseteq \mathrm{Ker}(\mathbf{A})$. | ||
|
||
Now, consider $\mathbf{x} \in \mathrm{Ker}(\mathbf{A})$. Then $\mathbf{A} \mathbf{x} = \mathbf{0}$, and | ||
|
||
$$ | ||
\mathbf{B} \mathbf{x} = (\mathbf{I}_m - \mathbf{A}^+ \mathbf{A}) \mathbf{x} = \mathbf{x} | ||
$$ | ||
|
||
Thus, $\mathbf{x} \in \mathrm{Im}(\mathbf{B})$. Therefore, $\mathrm{Im}(\mathbf{B}) = \mathrm{Ker}(\mathbf{A})$. | ||
|
||
### (4) | ||
|
||
Given $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$ where $\mathbf{x}_1 = \mathbf{B} \mathbf{x}$ and $\mathbf{x}_2 = \mathbf{x} - \mathbf{x}_1$: | ||
|
||
$$ | ||
\mathbf{x}_2 = \mathbf{x} - \mathbf{B} \mathbf{x} = \mathbf{x} - (\mathbf{I}_m - \mathbf{A}^+ \mathbf{A}) \mathbf{x} = \mathbf{A}^+ \mathbf{A} \mathbf{x} | ||
$$ | ||
|
||
To show orthogonality: | ||
|
||
$$ | ||
\mathbf{x}_1^T \mathbf{x}_2 = (\mathbf{B} \mathbf{x})^T (\mathbf{A}^+ \mathbf{A} \mathbf{x}) = \mathbf{x}^T \mathbf{B}^T \mathbf{A}^+ \mathbf{A} \mathbf{x} | ||
$$ | ||
|
||
Since $\mathbf{B}$ is symmetric ($\mathbf{B} = \mathbf{I}_m - \mathbf{A}^+ \mathbf{A}$): | ||
|
||
$$ | ||
\mathbf{x}^T (\mathbf{I}_m - \mathbf{A}^+ \mathbf{A}) \mathbf{A}^+ \mathbf{A} \mathbf{x} = \mathbf{x}^T (\mathbf{A}^+ \mathbf{A} - \mathbf{A}^+ \mathbf{A}) \mathbf{x} = \mathbf{0} | ||
$$ | ||
|
||
Thus, $\mathbf{x}_1$ and $\mathbf{x}_2$ are orthogonal. | ||
|
||
### (5) | ||
|
||
Let $\mathbf{x}_0 = \mathbf{A}^+ \mathbf{b}$. We need to show that $\mathbf{x} = \mathbf{x}_0$ minimizes the expression. | ||
|
||
Consider the error: | ||
|
||
$$ | ||
\mathbf{A} \mathbf{x} - \mathbf{b} = \mathbf{A} (\mathbf{x} - \mathbf{x}_0) + (\mathbf{A} \mathbf{x}_0 - \mathbf{b}) | ||
$$ | ||
|
||
Since $\mathbf{x}_0 = \mathbf{A}^+ \mathbf{b}$, we have $\mathbf{A} \mathbf{x}_0 = \mathbf{b}$, thus: | ||
|
||
$$ | ||
\mathbf{A} \mathbf{x} - \mathbf{b} = \mathbf{A} (\mathbf{x} - \mathbf{x}_0) | ||
$$ | ||
|
||
The norm to be minimized is: | ||
|
||
$$ | ||
(\mathbf{A} \mathbf{x} - \mathbf{b})^T (\mathbf{A} \mathbf{x} - \mathbf{b}) = (\mathbf{A} (\mathbf{x} - \mathbf{x}_0))^T (\mathbf{A} (\mathbf{x} - \mathbf{x}_0)) | ||
$$ | ||
|
||
This is minimized when $\mathbf{x} = \mathbf{x}_0$ since $\mathbf{A} \mathbf{x}_0 = \mathbf{b}$ and $\mathbf{A} (\mathbf{x} - \mathbf{x}_0) = \mathbf{0}$. | ||
|
||
## **Knowledge** | ||
|
||
奇异值分解 线性映射 广义逆矩阵 正交分解 线性代数 | ||
|
||
### 重点词汇 | ||
|
||
- singular value decomposition (SVD) 奇异值分解 | ||
- pseudoinverse 广义逆 | ||
- surjective 满射 | ||
- injective 单射 | ||
- orthogonal decomposition 正交分解 | ||
|
||
### 参考资料 | ||
|
||
1. "Linear Algebra and Its Applications" by Gilbert Strang, Chapter 7: The Singular Value Decomposition (SVD) | ||
2. "Matrix Computations" by Gene H. Golub and Charles F. Van Loan, Chapter 2: Matrix Analysis |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters