-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
224 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,226 @@ | ||
# larch | ||
LLM toolbox | ||
|
||
The tool tentatively has the following components to create any downstream llm-based search engine. | ||
|
||
Installation can be don through: | ||
```bash | ||
# direct remote installation | ||
pip install git+ssh://git@github.com/NASA-IMPACT/larch.git | ||
|
||
# or clone and install | ||
git clone -b develop git@github.com:NASA-IMPACT/larch.git | ||
cd larch | ||
pip install -e # or python setup.py install | ||
``` | ||
|
||
|
||
# Components | ||
|
||
## 1. DocumentIndexer | ||
|
||
`larch.indexing.DocumentIndexer` allows to query (`.query(..., top_k=)` and fetch top_k (`.query_top_k(...)`) documents that are indexed in a the document store. | ||
- `larch.indexing.SinequaDocumentIndexer` is used to directly connect to Sinequa to fetch relevant documents (no indexing method is allowed in this as it's left to sinequa itself) | ||
- `larch.indexing.PaperQADocumentIndexer` uses paperqa to index documents (`index_documents(<paths>)`) | ||
- `larch.indexing.LangchainDocumentIndexer` allows to switch between any vector store (faiss, pgvector, etc) to allow for indexing. (`index_documents(<paths>)`) | ||
- `larch.indexing.DocumentMetadataIndexer` allows to extract/index/dump metadata extracted from files which are then further used in downstream SQL agent. This takes in `larch.metadata.MetadataExtractor` and pydantic schema applied to each document. | ||
|
||
## 2. MetadataExtractor | ||
|
||
`larch.metadata._base.AbstractMetadataExtractor` allows for implementing any downstream metadata extractor. | ||
|
||
- `larch.metadata.extractors_openai.InstructorBasedOpenAIMetadataExtractor` is the standard extractor that is recommended to use. This uses function-calling. * | ||
- `larch.metadata.extractors.LangchainBasedMetadataExtractor` uses vanilla langchain and prompting to extract metadata. | ||
- `larch.metadata.extractors.LegacyMetadataExtractor` is a refactored older algorithm from IMPACT. | ||
|
||
|
||
## 3. SearchEngine | ||
|
||
`larch.search.engines.AbstractSearchEngine` component is used to abstract query-to-response process to generate answer for given user query. All the downstream search engine has to implement `query(query=<str>, top_k=<top_k>)` method. | ||
|
||
- `larch.search.engines.SimpleRAG` simply uses any `DocumentIndexer` (especially the `query(...)` method) to wrap a RAG pipeline. (Alternatively, one can always use `.query(...)` method from the document indexer). | ||
- `larch.search.engines.InMemoryDocumentQAEngine` takes in N documents on top of which QA can be done. This can be used standalone engine as well as can be used with `DocumentStoreRAG` | ||
- `larch.search.engines.DocumentStoreRAG` uses the `InMemoryDocumentQAEngine` and `DocumentIndexer` for QA. `DocumentIndexer.query_top_k(...)` is used to fetch top k relevant documents which are then fed to the QA engine. * | ||
- `larch.search.engines.SQLAgentSearchEngine` connects to a given database (and set of tables in the database), generates SQL query for a given query and generates the response for the query by fetching relevant rows from the database. This is used only if we want more complex tasks like aggregation, analysis and recommended to be used only if `MetadataExtractor` performs accurately. * | ||
- `larch.search.engines.MultiRetrieverSearchEngine` takes in an arbitrary number of `AbstractSearchEngine`(retrievers/sources) and generates individual responses for a given query from each retriever and finally consolidates the responses from them. This is the recommended way to ensemble multiple engine retriever in larch. (Note, each retriever is run in parallel). | ||
- `larch.search.engines.EnsembleAugmentedSearchEngine` is a very naive engine that takes in multiple engines, runs through each of them sequentially and puts all the responses in single context prompt and uses LLM to do the QA. Not recommended for now. | ||
|
||
## 4. MetadataValidator | ||
|
||
`larch.metadata.MetadataValidator` is used to post-process the extracted metadata. | ||
- `larch.metadata.validators.SimpleInTextMetadataValidator` checks if the extracted value of a field in the metadata lies in the text. If it doesn't, that field is removed. (Not recommended to use) | ||
- `larch.metadata.validators.WhitelistBasedMetadataValidator` uses a whitelist to standardize the extracted value in a field. Each field value could have set of alternate values. Fuzzy-matching is used to figure out whether to standardize or not. | ||
|
||
## 5. MetadataEvaluator | ||
|
||
`larch.metadata.MetadataEvaluator` is used to evaluate (numerically) the extraction of metadata. | ||
|
||
- `larch.metadata.evaluators.JaccardEvaluator` computes the ratio of tokens found between prediction and reference (doesn't account for word ordering) | ||
- `larch.metadata.evaluators.FlattenedExactMatcher` computes the score by flattening the prediction and reference metadata and comparing the values. (better than `JaccardEvaluator`) | ||
- `larch.metadata.evaluators.RecursiveFuzzyMatcher` is the recommended evaluator that performs weighted scoring for each node. (See documentation for more)* | ||
|
||
## 6. TextProcessor | ||
|
||
`larch.processors.TextProcessor` allows for processing text. All the text processors takes in a text and egest out processed text. | ||
|
||
- `larch.processors.PIIRemover` uses spacy to identify Personal Identification Information (name, email, phone number) and mask them out. | ||
- `larch.processors.NonAlphaNumericRemover` removes non-alpha-numeric characters from the text | ||
- `larch.processors.TextProcessingPipeline` is a container to hold all the text processors and run them sequentially. | ||
|
||
--- | ||
|
||
# Usage | ||
|
||
We can do: | ||
- metadata extraction | ||
- index documents into vector store | ||
- json dump metadata in bulk | ||
- create RAG pipeline | ||
- etc | ||
|
||
## Metadata Extraction | ||
|
||
Extract from single document text | ||
|
||
```python | ||
from larch.metadata import InstructorBasedOpenAIMetadataExtractor | ||
from larch.metadata.validators import WhitelistBasedMetadataValidator | ||
from larch.processors import PIIRemover, TextProcessingPipeline | ||
from larch.utils import load_whitelist | ||
|
||
text_processor = TextProcessingPipeline( | ||
lambda x: re.sub(r"\$(?=\w|\n|\()", " ", x).strip(), | ||
lambda x: re.sub(r"\)(?=\w|\n|\()", " ", x).strip(), | ||
lambda x: re.sub(r"\#(?=\w|\n|\()", " ", x).strip(), | ||
lambda x: x.replace("\t", " ").replace("!", " ").strip(), | ||
PIIRemover() | ||
) | ||
|
||
schema = <pydantic schema> | ||
whitelists = load_whitelist(<path_to_excel>) | ||
|
||
metadata_extractor = InstructorBasedOpenAIMetadataExtractor( | ||
model="gpt-4", | ||
schema=schema, | ||
preprocessor=text_processor, | ||
debug=True, | ||
) | ||
validator = WhitelistBasedMetadataValidator(whitelists=whitelists, fuzzy_threshold=0.95, ...) | ||
|
||
text = <document text> | ||
|
||
metadata = metadata_extractor(text) | ||
metadata = validator(metadata) | ||
``` | ||
|
||
Extract in bulk and json dump | ||
|
||
```python | ||
from larch.indexing import DocumentMetadataIndexer | ||
|
||
metadata_indexer = DocumentMetadataIndexer( | ||
schema, | ||
metadata_extractor = metadata_extractor, | ||
skip_errors=True, | ||
text_preprocessor=text_processor, | ||
debug=True, | ||
) | ||
|
||
file_paths = <paths> | ||
|
||
# start indexing | ||
metadata_indexer.index_documents(paths=file_paths, save_path=<path_to_json_file>) | ||
|
||
# load existing indices | ||
metadata_indexer = metadata_indexer.load_index(<path_to_json_file>) | ||
|
||
# access the metadata store dict | ||
metadata_indexer.metadata_store | ||
``` | ||
|
||
## Document Indexing | ||
|
||
```python | ||
from langchain.chat_models import ChatOpenAI | ||
from langchain.embeddings import OpenAIEmbeddings | ||
from langchain.text_splitter import TokenTextSplitter | ||
|
||
from larch.indexing import PaperQADocumentIndexer, LangchainDocumentIndexer | ||
|
||
model = "gpt-3.5-turbo-0613" | ||
embedder = OpenAIEmbeddings() | ||
|
||
text_splitter = TokenTextSplitter(chunk_size=512, chunk_overlap=50) | ||
|
||
vector_store = PGVector( | ||
collection_name="test_collection", | ||
connection_string="postgresql://...", | ||
embedding_function=embedder, | ||
) | ||
|
||
# if vector_store is None, FAISS is used by default | ||
document_indexer = LangchainDocumentIndexer( | ||
llm=ChatOpenAI(model=model, temperature=0.0), | ||
text_preprocessor=text_processor, | ||
vector_store=vector_store, | ||
# vector_store=FAISS.load_local("../tmp/vectorstore", embeddings=embedder, index_name="test_index"), | ||
text_splitter=text_splitter, | ||
debug=True, | ||
) | ||
|
||
# get number of chunks in the store | ||
print(document_indexer.num_chunks) | ||
|
||
# or use paperqa | ||
document_indexer = PaperQADocumentIndexer( | ||
llm=ChatOpenAI(model=model, temperature=0.0), | ||
text_preprocessor=text_processor, | ||
debug=True, | ||
name="test", | ||
)#.load_index(<path_to_pickle>) | ||
|
||
# get files that are indexed | ||
print(document_indexer.docs) | ||
``` | ||
|
||
## search engine | ||
|
||
|
||
```python | ||
from larch.search.engines import InMemoryDocumentQAEngine, SQLAgentSearchEngine, MultiRetrieverSearchEngine | ||
|
||
llm = ChatOpenAI( | ||
model="gpt-4", | ||
temperature=0.0, | ||
) | ||
|
||
top_k = 5 | ||
|
||
engines = [ | ||
SinequaDocumentIndexer( | ||
base_url=os.environ.get("SINEQUA_BASE_URL"), | ||
auth_token=os.environ.get("SINEQUA_ACCESS_TOKEN") | ||
), | ||
LangchainDocumentIndexer(...), | ||
SQLAgentSearchEngine( | ||
llm=llm, | ||
db_uri=<db_uri>, | ||
tables=None, # or provide a list of table names | ||
debug=True, | ||
prompt_prefix=False, | ||
query_augmentation_prompt=<prompt_suffix>, | ||
sql_fuzzy_threshold=0.75, | ||
railguard_response=True, | ||
) | ||
] | ||
|
||
# create multi-retriever engine | ||
search_engine = MultiRetrieverSearchEngine(*engines, llm=llm) | ||
|
||
query = <query_text> | ||
response = search_engine(query, top_k=top_k) | ||
|
||
# we can also use individual engine which has same interface | ||
search_engine = engines[1] | ||
response = search_engine(query, top_k=top_k) | ||
``` |