GPU: RTX3090 x 2 Platform: AutoDL
- NAME="Ubuntu"
- VERSION="20.04.4 LTS (Focal Fossa)"
- CUDA=12.4
- Pytorch=2.5.0
pip install -r requirements.txt
python main.py
python rag_naive.py
- 我们使用了Qwen2.5作为LLM模型
- 目前仅测试了Qwen2.5的1.5B参数版本
- 核心代码都放在
src/
目录下. src/
的目录结构:
src:
data:
- processed_data
- data_augmentation.py
- data_preprocessor.py
- init.py
training:
- dpo_trainer.py
- sft_trainer.py
- multi_task_trainer.py
- init.py
models:
- model.py
- init.py
ui:
- app.py
- mindmap.py
- init.py
data:
- 各种数据集
utils.py
configs:
- config.py
- init.py
- 我们使用了一个旅游对话数据集:CrossWOZ
- Dataset Citation:
@inproceedings{zhu2020crosswoz,
title={CrossWOZ: A Large-Scale Chinese Cross-Domain Task-Oriented Dialogue Dataset},
author={Zhu, Qi and Zhang, Zheng and Fang, Yan and Li, Xiang and Takanobu, Ryuichi and Li, Jinchao and Peng, Baolin and Gao, Jianfeng and Zhu, Xiaoyan and Huang, Minlie},
booktitle={Transactions of the Association for Computational Linguistics},
year={2020},
url={https://arxiv.org/abs/2002.11893}
}
我们给RAG的问题包含了:question+context, context是由数据集中前5个与question最接近的样本组成的。
- we refer to many other projects when building this project.
- knowledge-graph-from-GPT
- ai-travel-agent
- GPT2
- RLHF_instructGPT